cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A338891 a(n) is the least number k such that the average number of odd divisors of {1..k} is >= n.

Original entry on oeis.org

1, 21, 165, 1274, 9435, 69720, 515230, 3807265, 28132035, 207869515, 1535959665, 11349295155, 83860579775
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 14 2020

Keywords

Examples

			a(5) = 9435 because the average number of odd divisors of {1..9435} is >= 5.
		

Crossrefs

Programs

  • Mathematica
    m = 1; sum = 0; s = {}; Do[sum += DivisorSigma[0, k/2^IntegerExponent[k, 2]]; If[sum >= m*k, AppendTo[s, k]; m++], {k, 1, 10^6}]; s (* Amiram Eldar, Nov 15 2020 *)
  • PARI
    a(n) = my(s=1, k=1); while(s>valuation(k, 2))); k; \\ Michel Marcus, Nov 14 2020

Formula

a(n+1)/a(n) approaches e^2.

Extensions

a(11)-a(12) from Amiram Eldar, Nov 16 2020
a(13) from Bill McEachen, Sep 01 2025

A222391 Decimal expansion of e^2/sqrt(Pi).

Original entry on oeis.org

4, 1, 6, 8, 8, 2, 8, 4, 8, 3, 2, 6, 6, 6, 9, 2, 2, 3, 0, 4, 2, 1, 3, 0, 3, 9, 0, 7, 7, 5, 2, 3, 1, 0, 2, 6, 0, 3, 8, 6, 6, 6, 4, 6, 8, 1, 1, 4, 8, 4, 9, 9, 6, 3, 7, 8, 3, 0, 0, 0, 8, 9, 5, 4, 6, 2, 4, 0, 4, 3, 2, 2, 7, 2, 0, 1, 5, 3, 6, 0, 9, 2, 7, 9, 8, 1, 9
Offset: 1

Views

Author

Bruno Berselli, Mar 19 2013

Keywords

Examples

			4.1688284832666922304213039077523102603866646811484996378300089546240432...
		

Crossrefs

Cf. A096789: Sum_{n >= 1} 1/(Gamma(n)*Gamma(n+1)).
Cf. A035009 (see fourth comment).

Programs

  • Maple
    Digits:=100: evalf(exp(1)^2/sqrt(Pi)); # Wesley Ivan Hurt, Jan 09 2017
  • Mathematica
    RealDigits[E^2/Sqrt[Pi], 10, 90][[1]]
  • PARI
    (exp(1))^2/sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

Formula

Equals decimal expansion of Sum_{n >= 1} 1/(Gamma(n/2)*Gamma((n+1)/2)).

A096437 Decimal expansion of (Pi^2-e^2)^(1/2).

Original entry on oeis.org

1, 5, 7, 4, 9, 7, 5, 6, 5, 1, 2, 9, 0, 7, 4, 5, 6, 3, 4, 6, 8, 2, 6, 8, 1, 9, 9, 7, 6, 0, 6, 9, 9, 2, 7, 6, 5, 2, 6, 0, 8, 7, 2, 5, 7, 5, 2, 5, 9, 2, 2, 7, 9, 5, 4, 2, 7, 3, 3, 6, 3, 5, 6, 1, 1, 9, 5, 1, 3, 1, 4, 5, 6, 9, 5, 8, 0, 2, 0, 1, 7, 7, 5, 3, 7, 0, 3, 6, 6, 2, 2, 6, 4, 8, 2, 9, 6, 7, 1, 7, 9, 3, 3, 7, 1
Offset: 1

Views

Author

Mohammad K. Azarian, Aug 10 2004

Keywords

Examples

			1.57497565129074563468268199760699
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[Pi^2-E^2],10,120][[1]] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    sqrt(Pi^2 - exp(2)) \\ G. C. Greubel, Feb 07 2017

A293359 Greatest integer k such that k/2^n < e^2.

Original entry on oeis.org

7, 14, 29, 59, 118, 236, 472, 945, 1891, 3783, 7566, 15132, 30265, 60531, 121062, 242124, 484249, 968498, 1936996, 3873993, 7747986, 15495973, 30991947, 61983895, 123967790, 247935580, 495871160, 991742321, 1983484643, 3966969286, 7933938573, 15867877146
Offset: 0

Views

Author

Clark Kimberling, Oct 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = E^2;
    Table[Floor[r*2^n], {n, 0, z}];   (* A293359 *)
    Table[Ceiling[r*2^n], {n, 0, z}]; (* A293360 *)
    Table[Round[r*2^n], {n, 0, z}];   (* A293361 *)

Formula

a(n) = floor(r*2^n), where r = e^2.
a(n) = A293360(n) - 1.

A293360 Least integer k such that k/2^n > e^2.

Original entry on oeis.org

8, 15, 30, 60, 119, 237, 473, 946, 1892, 3784, 7567, 15133, 30266, 60532, 121063, 242125, 484250, 968499, 1936997, 3873994, 7747987, 15495974, 30991948, 61983896, 123967791, 247935581, 495871161, 991742322, 1983484644, 3966969287, 7933938574, 15867877147
Offset: 0

Views

Author

Clark Kimberling, Oct 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = E^2;
    Table[Floor[r*2^n], {n, 0, z}];   (* A293359 *)
    Table[Ceiling[r*2^n], {n, 0, z}]; (* A293360 *)
    Table[Round[r*2^n], {n, 0, z}];   (* A293361 *)

Formula

a(n) = ceiling(r*2^n), where r = e^2.
a(n) = A293359(n) + 1.

A293361 The integer k that minimizes |k/2^n - e^2|.

Original entry on oeis.org

7, 15, 30, 59, 118, 236, 473, 946, 1892, 3783, 7566, 15133, 30266, 60531, 121062, 242125, 484249, 968498, 1936997, 3873993, 7747987, 15495974, 30991948, 61983895, 123967790, 247935580, 495871161, 991742322, 1983484643, 3966969287, 7933938573, 15867877147
Offset: 0

Views

Author

Clark Kimberling, Oct 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = E^2;
    Table[Floor[r*2^n], {n, 0, z}];   (* A293359 *)
    Table[Ceiling[r*2^n], {n, 0, z}]; (* A293360 *)
    Table[Round[r*2^n], {n, 0, z}];   (* A293361 *)

Formula

a(n) = floor(1/2 + (e^2)*2^n).
a(n) = A293359(n) if (fractional part of (e^2)*2^n) < 1/2, else a(n) = A293360(n).

A368654 Decimal expansion of 158452/21444.

Original entry on oeis.org

7, 3, 8, 9, 1, 0, 6, 5, 0, 9, 9, 7, 9, 4, 8, 1, 4, 4, 0, 0, 2, 9, 8, 4, 5, 1, 7, 8, 1, 3, 8, 4, 0, 7, 0, 1, 3, 6, 1, 6, 8, 6, 2, 5, 2, 5, 6, 4, 8, 1, 9, 9, 9, 6, 2, 6, 9, 3, 5, 2, 7, 3, 2, 6, 9, 9, 1, 2, 3, 2, 9, 7, 8, 9, 2, 1, 8, 4, 2, 9, 3, 9, 7, 5, 0, 0, 4, 6
Offset: 1

Views

Author

Stefano Spezia, Jan 02 2024

Keywords

Comments

It is a rational approximation of e^2 (A072334) provided by Charles Hermite in 1874 (see Hermite and Maor).
Periodic with a period length of 893. - Ray Chandler, Jan 19 2024

Examples

			7.38910650997948144002984517813840701361686...
		

References

  • Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994), p. 189.

Crossrefs

Programs

  • Mathematica
    Flatten[First[RealDigits[158452/21444,10,100]]]

A067840 Factorial expansion of e^2 : exp(2) = Sum_{n >= 0} a(n)/n!.

Original entry on oeis.org

7, 0, 0, 2, 1, 1, 4, 0, 6, 6, 6, 8, 5, 11, 5, 10, 10, 15, 16, 8, 19, 18, 15, 0, 16, 1, 2, 26, 17, 27, 23, 17, 18, 11, 24, 34, 25, 16, 27, 5, 33, 20, 11, 39, 35, 25, 39, 7, 5, 21, 27, 30, 33, 21, 34, 9, 10, 26, 32, 15, 35, 23, 6, 3, 21, 43, 50, 40, 41, 33, 1, 62, 58, 59, 12, 23, 62, 42
Offset: 0

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Formula

a(0) = 7; for n>=1, a(n) = floor(n!*e^2) - n*floor((n-1)!*e^2).

Extensions

Offset changed to 0 by Sean A. Irvine, Jan 09 2024

A182767 Beatty sequence for 1+e^2.

Original entry on oeis.org

8, 16, 25, 33, 41, 50, 58, 67, 75, 83, 92, 100, 109, 117, 125, 134, 142, 151, 159, 167, 176, 184, 192, 201, 209, 218, 226, 234, 243, 251, 260, 268, 276, 285, 293, 302, 310, 318, 327, 335, 343, 352, 360, 369, 377, 385, 394, 402, 411, 419, 427
Offset: 1

Views

Author

Clark Kimberling, Nov 29 2010

Keywords

Comments

Let u=e=A001113 and v=1/e=A068985. Jointly rank {j*u} and {k*v} as in the first comment at A182760; a(n) is the position of n*u.

Crossrefs

Programs

  • Maple
    A182767 := proc(n) floor(n*(1+exp(2))) ; end proc:

Formula

a(n)=floor(n*(1+e^2)) = floor(n+n*A072334).

A225141 Primes from merging of 10 successive digits in the decimal expansion of exp(2).

Original entry on oeis.org

7460575007, 2252257379, 6079057763, 5316126547, 7447839221, 5414146799, 2933188807, 8997407299, 7407299869, 2998696009, 9869600953, 2368469479, 6947930299, 7714456831, 1445683123, 6619147987, 8715043283, 7724849201, 8492011193, 1193531621, 2117195173
Offset: 1

Views

Author

Bruno Berselli, Apr 30 2013

Keywords

Comments

Leading zeros are not permitted, so each prime is 10 digits in length. The terms are listed in the order in which they occur.

Crossrefs

Programs

  • Mathematica
    With[{len = 10}, FromDigits /@ Select[Partition[RealDigits[E^2, 10, 700][[1]], len, 1], PrimeQ[FromDigits[#]] && IntegerLength[FromDigits[#]] == len &]]
Previous Showing 11-20 of 36 results. Next