A338891 a(n) is the least number k such that the average number of odd divisors of {1..k} is >= n.
1, 21, 165, 1274, 9435, 69720, 515230, 3807265, 28132035, 207869515, 1535959665, 11349295155, 83860579775
Offset: 1
Examples
a(5) = 9435 because the average number of odd divisors of {1..9435} is >= 5.
Links
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
Programs
-
Mathematica
m = 1; sum = 0; s = {}; Do[sum += DivisorSigma[0, k/2^IntegerExponent[k, 2]]; If[sum >= m*k, AppendTo[s, k]; m++], {k, 1, 10^6}]; s (* Amiram Eldar, Nov 15 2020 *)
-
PARI
a(n) = my(s=1, k=1); while(s
>valuation(k, 2))); k; \\ Michel Marcus, Nov 14 2020
Formula
a(n+1)/a(n) approaches e^2.
Extensions
a(11)-a(12) from Amiram Eldar, Nov 16 2020
a(13) from Bill McEachen, Sep 01 2025
Comments