cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A140987 Number of groups of order F(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 2, 2, 2, 1, 197, 1, 1, 6, 2, 1, 41, 1, 7, 4, 1, 1
Offset: 1

Views

Author

Jonathan Vos Post, Jul 28 2008

Keywords

Examples

			a(6) = 5 because Fibonacci number F(6) = 8 and there are 5 groups of order 8.
		

Crossrefs

Formula

a(n) = A000001(A000045(n)).

Extensions

Entries through a(17) checked by N. J. A. Sloane, Aug 01 2008
a(18)-a(23) from Eric M. Schmidt, Jun 19 2014

A241484 Primes p such that p+2 and p+4 are semiprime.

Original entry on oeis.org

2, 31, 47, 53, 83, 89, 139, 157, 181, 199, 211, 233, 263, 317, 337, 389, 409, 443, 449, 467, 541, 577, 587, 631, 677, 683, 719, 751, 787, 811, 839, 919, 947, 991, 1039, 1097, 1117, 1163, 1187, 1201, 1259, 1367, 1381, 1399, 1559, 1637, 1669, 1709, 1759, 1777, 1847
Offset: 1

Views

Author

K. D. Bajpai, Apr 23 2014

Keywords

Examples

			31 is prime and appears in the sequence because 31+2 = 33 = 3*11 and 31+4 = 35 = 5*7, which are semiprime.
53 is prime and appears in the sequence because 53+2 = 55 = 5*11 and 53+4 = 57 = 3*19, which are semiprime.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(2000)| IsSemiprime(p+2) and IsSemiprime(p+4)]; // Vincenzo Librandi, Apr 24 2014
  • Maple
    with(numtheory): KD:= proc() local a,b,d,k; k:=ithprime(n); a:=bigomega(k+2);b:=bigomega(k+4); if a=2 and  b=2 then RETURN (k); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    KD = {}; Do[t = Prime[n];If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2,AppendTo[KD, t]], {n, 1000}]; KD

A241554 Semiprimes generated by the polynomial 2 * n^2 + 29.

Original entry on oeis.org

1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117
Offset: 1

Views

Author

K. D. Bajpai, Apr 25 2014

Keywords

Comments

2 * n^2 + 29 is a well-known Legendre prime-producing polynomial which generates 29 distinct primes for n = 0, 1, ..., 28. For n = 29, it yields the first semiprime, 1711 = 29 * 59.
The number n = 185 is the least positive integer for which 2*n^2 + 29 = 68479 = 31 * 47 * 47 is not squarefree.

Examples

			2 * 30^2 + 29 = 1829 = 31 * 59, which is a semiprime and is a term.
2 * 35^2 + 29 = 2479 = 37 * 67, which is a semiprime and is a term.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A241554:= proc() local k; k:=2*x^2+29;if bigomega(k)=2 then RETURN (k); fi; end: seq(A241554(), x=0..500);
  • Mathematica
    A241554 = {}; Do[k = 2 * n^2 + 29; If[PrimeOmega[k] == 2, AppendTo[A241554, k]], {n,200}]; A241554
  • PARI
    s=[]; for(n=1, 200, t=2*n^2+29; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 26 2014

A286545 Restricted growth sequence of A278245 (prime signature of Fibonacci numbers).

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 4, 4, 4, 2, 5, 2, 4, 6, 6, 2, 7, 4, 8, 6, 4, 2, 9, 10, 4, 8, 8, 2, 11, 4, 8, 6, 4, 6, 12, 6, 6, 6, 13, 4, 11, 2, 14, 14, 6, 2, 15, 6, 16, 6, 8, 4, 17, 8, 18, 14, 6, 4, 19, 4, 6, 14, 13, 6, 11, 6, 14, 14, 20, 4, 21, 4, 8, 16, 14, 8, 17, 4, 22, 20, 6, 2, 23, 8, 6, 8, 22, 4, 24, 25, 13, 8, 4, 13, 26, 8, 14, 13, 27, 4, 17, 6, 20, 20, 6, 4, 28
Offset: 1

Views

Author

Antti Karttunen, May 17 2017

Keywords

Crossrefs

Cf. A001605 (positions of 2's), A072381 (of 4's).

A114812 Indices of Fibonacci numbers with 3 prime factors when counted with multiplicity.

Original entry on oeis.org

6, 15, 16, 21, 25, 33, 35, 37, 38, 39, 46, 49, 51, 58, 62, 65, 67, 82, 86, 103, 106, 119, 122, 139, 142, 145, 158, 166, 179, 181, 226, 233, 235, 241, 257, 263, 274, 281, 299, 301, 317, 337, 383, 389, 419, 457, 463, 473, 479, 491, 521, 541, 557, 619, 643, 659
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Comments

1811, 1933, 1997, 2069, 2087, 2203, 2221, 2311, 2663, 2713, 3631, 4157, 4651, 5107, 6701, 7211, 8123 are also terms (from data in Kelly link). - Chai Wah Wu, Nov 11 2019

Examples

			a(2)=15 because 15th Fibonacci number (i.e., 610) consists of 3 prime factors (i.e., 2*5*61).
		

Crossrefs

Column k=3 of A303215.

Programs

  • Mathematica
    t = {}; Do[f = FactorInteger[Fibonacci[n]]; If[Total[Transpose[f][[2]]] == 3, AppendTo[t, n]], {n, 2, 100}]; t (* T. D. Noe, Mar 14 2014 *)
    Flatten[Position[Fibonacci[Range[700]],?(PrimeOmega[#]==3&)]] (* _Harvey P. Dale, Feb 15 2015 *)
  • PARI
    n=1;while(n<340,if(bigomega(fibonacci(n))==3,print1(n,", "));n++)

Formula

{n: A038575(n)=3}. [R. J. Mathar, Jun 08 2010]

Extensions

More terms from Ryan Propper, May 22 2006

A241716 Primes p such that p^3 - 2 is semiprime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 41, 43, 47, 61, 79, 89, 101, 107, 139, 157, 181, 199, 239, 271, 307, 311, 331, 337, 347, 349, 379, 397, 409, 421, 431, 479, 487, 499, 521, 523, 541, 571, 607, 613, 641, 643, 661, 673, 701, 719, 761, 769, 811, 823, 829, 839, 877, 881, 883
Offset: 1

Views

Author

K. D. Bajpai, Apr 27 2014

Keywords

Examples

			11 is prime and appears in the sequence because 11^3 - 2 = 1329 = 3 * 443, which is a semiprime.
17 is prime and appears in the sequence because 17^3 - 2 = 4911 = 3 * 1637, which is a semiprime.
23 is prime but does not appear in the sequence because 23^3 - 2 = 12165 =  3 * 5 * 811, which is not a semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A241716:= proc() local k; k:=ithprime(x); if bigomega(k^3-2)=2 then RETURN (k); fi; end: seq(A241716(), x=1..500);
  • Mathematica
    A241716 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 - 2] == 2, AppendTo[A241716, t]], {n, 500}]; A241716
    Select[Prime[Range[200]],PrimeOmega[#^3-2]==2&] (* Harvey P. Dale, Dec 09 2018 *)

A241732 Primes p such that p^3 + 2 and p^3 - 2 are semiprime.

Original entry on oeis.org

2, 11, 13, 17, 41, 89, 101, 239, 271, 331, 571, 641, 719, 1051, 1231, 1321, 1549, 1559, 1721, 1741, 1831, 1993, 1999, 2029, 2311, 2459, 2749, 2837, 2861, 2939, 3389, 3467, 3671, 4049, 4111, 4273, 4787, 4919, 4969, 5657, 5689, 5861, 6221, 6679, 6691, 6829, 7109
Offset: 1

Views

Author

K. D. Bajpai, Apr 27 2014

Keywords

Examples

			11 is prime and appears in the sequence because 11^3 + 2 = 1333 = 31 * 43 and 11^3 - 2 = 1329 = 3 * 443, both are semiprime.
41 is prime and appears in the sequence because 41^3 + 2 = 68923 = 157 * 439 and 41^3 - 2 = 68919 = 3 * 22973, both are semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local k; k:=ithprime(n); if bigomega(k^3+2)=2 and bigomega(k^3-2)=2 then k; fi; end: seq(KD(), n=1..2000);
  • Mathematica
    A241732 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2 && PrimeOmega[t^3 - 2] == 2, AppendTo[A241732, t]], {n, 500}]; A241732
    Select[Prime[Range[1000]],PrimeOmega[#^3+2]==PrimeOmega[#^3-2]==2&] (* Harvey P. Dale, Jun 20 2019 *)

A136341 Fibonacci primes or semiprimes F(k) such that F(k+1) is again prime or semiprime.

Original entry on oeis.org

2, 3, 13, 21, 34, 55, 233, 17711
Offset: 1

Views

Author

Cino Hilliard, Mar 28 2008

Keywords

Comments

By definition, the smaller number in a pair of two consecutive Fibonacci numbers in A061305. a(9), if it exists, is >= A000045(230), so it has at least 48 digits. [R. J. Mathar, Feb 06 2010]
A search for consecutive numbers in the union of A072381 and A001605 shows that a(9) must be larger than A000045(990), a number with 207 digits, if it exists. [R. J. Mathar, Jun 02 2010]

Examples

			(55,89) is an almost twin Fibonacci prime pair because 55=5*11 is a 2-almost prime and 89 is prime.
		

Crossrefs

Cf. A001358.
Cf. A053409, A005478. [R. J. Mathar, Jun 02 2010]

Programs

  • Mathematica
    Fibonacci[#]&/@(SequencePosition[Table[If[PrimeOmega[f]<=2,1,0],{f,Fibonacci[ Range[150]]}],{1,1}][[All,1]]) (* Harvey P. Dale, Mar 29 2022 *)
  • PARI
    ATfib(n) = for(x=3,n,f1=fibonacci(x);f2=fibonacci(x+1);if(bigomega (f1)<=2&&bigomega(f2)<=2, print1(f1",")))
    
  • PARI
    for( k=3,10^5, bigomega( fibonacci( k++ ))>2 & next; bigomega( fibonacci( k-1 ))>2 & next; print1(fibonacci(k--)",")) \\ M. F. Hasler, May 01 2008

Formula

Let F(n) = n-th Fibonacci number and define a 2-almost prime number to be a number with only 2 prime divisors with multiplicity.

Extensions

Edited by M. F. Hasler, May 01 2008

A241607 Semiprimes generated by the polynomial (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316).

Original entry on oeis.org

5141923, 6084557, 11403823, 13201987, 17488411, 20017609, 33239291, 37446979, 42070423, 47139347, 72512623, 88747907, 118408673, 129881707, 169708339, 184952323, 201267887, 278376073, 324881567, 406044923, 436421497, 538566199, 616639427, 658920007, 750410069
Offset: 1

Views

Author

K. D. Bajpai, Apr 26 2014

Keywords

Comments

(1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) is a well known prime producing polynomial found by Shyam Sunder Gupta, which generates 57 distinct primes for n = 0,1,...,55,56.
For n = 57, this polynomial yields the first semiprime: 5141923 = 821 * 6263.

Examples

			For n=57: (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) = 5141923 = 821 * 6263, which is a semiprime and is included in the sequence.
For n=58: (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) = 6084557 = 131 * 46447, which is a semiprime and is included in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local a,b,k; k:=(1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316); a:=bigomega(k); if a=2 then RETURN (k); fi; end: seq(KD(), n=0..200);
  • Mathematica
    A241607 = {}; Do[k= (1/4) * (n^5 - 133 * n^4 + 6729 * n^3 - 158379 * n^2 + 1720294 * n - 6823316); If[PrimeOmega[k] ==2, AppendTo[A241607, k]], {n,200}]; A241607
    (*For the b-file:*) n=0;Do[t=((1/4) * (k^5 - 133 * k^4 + 6729 * k^3 - 158379 * k^2 + 1720294 * k - 6823316));If[PrimeOmega[t]==2, n++; Print[n," ",t]], {k,10^6}]
  • PARI
    s=[]; for(n=1, 200, t=(1/4)*(n^5-133*n^4+6729*n^3-158379*n^2+1720294*n-6823316); if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 26 2014

A250292 Numbers k such that Pell(k) is a semiprime.

Original entry on oeis.org

7, 9, 17, 19, 23, 43, 47, 67, 73, 83, 103, 109, 139, 149, 157, 173, 179, 223, 239, 281, 311, 313, 349, 431, 557, 569, 577, 587
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

a(29) >= 709. - Hugo Pfoertner, Jul 29 2019
859, 937, 1087, 1151, and 1193 belong to the sequence. 709 and 787 have not yet been ruled out. The next candidate after these appears to be 1471. - Daniel M. Jensen, Oct 18 2019

Examples

			17 is a term since Pell(17) = 1136689 = 137 * 8297 is a semiprime.
		

Crossrefs

Programs

  • Maple
    pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember):
    filter:= proc(n) local F,f;
       F:= ifactors(pell(n),easy)[2];
       if add(f[2],f=F) > 2 then return false fi;
       if hastype(F,symbol) then
         if add(f[2],f=F) >= 2 then return false fi;
       else return evalb(add(f[2],f=F)=2)
       fi;
       F:= ifactors(pell(n))[2];
       evalb(add(f[2],f=F)=2)
    end proc:
    select(filter, [$1..230]); # Robert Israel, Jan 18 2016
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = 2 a[n - 1] + a[n - 2]; Select[Range[0, 160], PrimeOmega@ a@ # == 2 &] (* Michael De Vlieger, Jan 19 2016 *)

Extensions

a(22)-a(23) from Daniel M. Jensen, Jan 18 2016
a(24) from Arkadiusz Wesolowski, Jan 19 2016
a(25)-a(27) from Sean A. Irvine, Jul 17 2017
a(28) from Sean A. Irvine, Jan 24 2018
Previous Showing 11-20 of 24 results. Next