cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A109237 a(n) = floor(n*coth(1)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2005

Keywords

Comments

Beatty sequence for coth(1) = (e^2+1)/(e^2-1) = 1.31303... = A073747; complement of A109238.
From Reinhard Zumkeller, Aug 11 2009: (Start)
a(n) = A164087(n) for n <= 20;
a(n) = A109239(A109238(n)) and A109239(a(n)) = A109238(n). (End)

Crossrefs

Extensions

Typo in comment corrected by Reinhard Zumkeller, Aug 10 2009

A298241 Decimal expansion of BesselI(1,2/3)/BesselI(0,2/3).

Original entry on oeis.org

3, 1, 6, 0, 8, 9, 2, 4, 1, 2, 6, 8, 2, 2, 1, 1, 8, 4, 0, 9, 5, 6, 0, 1, 6, 9, 1, 7, 1, 0, 5, 1, 8, 1, 1, 4, 7, 6, 6, 8, 6, 2, 9, 2, 7, 0, 0, 7, 0, 4, 1, 8, 2, 0, 7, 3, 9, 5, 4, 0, 0, 7, 3, 4, 7, 3, 2, 4, 1, 1, 6, 1, 8, 0, 4, 2, 7, 3, 5, 5, 9, 1, 8, 9, 8, 6, 6, 0, 7, 2, 1, 6, 4, 3, 9, 0, 0, 6, 6, 3, 3, 8, 1, 2, 7, 3, 8, 2, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.3160892412682211840956016917105181147668629270070418207...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/3]/BesselI[0, 2/3], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/3)^2/4] /(3 Gamma[2] Hypergeometric0F1[1, (2/3)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/3)/besseli(0,2/3) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(3 + 1/(6 + 1/(9 + 1/(12 + 1/(15 + 1/(18 + ...)))))).

A298243 Decimal expansion of BesselI(1,2/5)/BesselI(0,2/5).

Original entry on oeis.org

1, 9, 6, 1, 0, 3, 8, 1, 2, 2, 1, 7, 9, 9, 5, 5, 1, 3, 4, 0, 8, 3, 6, 1, 0, 6, 4, 6, 2, 6, 8, 7, 8, 5, 1, 7, 3, 7, 2, 5, 0, 5, 8, 0, 9, 4, 4, 6, 4, 2, 7, 0, 0, 2, 1, 1, 7, 6, 1, 7, 1, 4, 6, 5, 6, 6, 4, 7, 2, 0, 7, 2, 4, 6, 8, 6, 9, 5, 0, 7, 4, 4, 7, 5, 7, 5, 2, 4, 7, 4, 2, 7, 1, 4, 1, 2, 4, 4, 5, 3, 3, 2, 1, 3, 0, 7, 2, 0, 4, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.1961038122179955134083610646268785173725058094464270021...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/5]/BesselI[0, 2/5], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/5)^2/4]/(5 Gamma[2] Hypergeometric0F1[1, (2/5)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/5)/besseli(0,2/5) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(5 + 1/(10 + 1/(15 + 1/(20 + 1/(25 + 1/(30 + ...)))))).

A036244 Denominator of continued fraction given by C(n) = [ 1; 3, 5, 7, ...(2n-1)].

Original entry on oeis.org

1, 3, 16, 115, 1051, 11676, 152839, 2304261, 39325276, 749484505, 15778499881, 363654981768, 9107153044081, 246256787171955, 7150553981030776, 221913430199126011, 7330293750552189139, 256782194699525745876, 9508271497633004786551, 371079370602386712421365
Offset: 1

Views

Author

Keywords

Comments

Denominators of convergents to coth(1) = 1.313035... = A073747.
Convergents: 1/1, 4/3, 21/16, 151/115, ... - Michael Somos, Sep 27 2017

Examples

			G.f. = x + 3*x^2 + 16*x^3 + 115*x^4 + 1051*x^5 + 11676*x^6 + 152839*x^7 + ...
		

Crossrefs

Numerators are sequence A025164. A058798.

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else (2*n-1)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
  • Maple
    seq(denom(numtheory:-cfrac([seq(2*i-1,i=1..n)])),n=1..50); # Robert Israel, Apr 19 2015
  • Mathematica
    Rest[CoefficientList[Series[(E^(1-(1-2*x)^(1/2))/2 - E^(-1+(1-2*x)^(1/2))/2) / (1-2*x)^(1/2), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *)
    a[ n_ ] := a[n] =a[n-2]+(2 n-1) a[n-1]; a[0] := 0; a[1] := 1.  RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-2]+(2n-1)a[n-1]}, a, {n, 20}] (* G. C. Greubel,Apr 23 2015 *)
    a[ n_] := (BesselK[ 1/2, 1] BesselI[ n + 1/2, -1] - BesselI[ 1/2, -1] BesselK[n + 1/2, 1])  I // FunctionExpand // Simplify; (* Michael Somos, Sep 27 2017 *)
    Table[FromContinuedFraction[Range[1,2n+1,2]],{n,0,20}]//Denominator (* Harvey P. Dale, May 06 2018 *)
    Convergents[Coth[1], 20] // Denominator (* Jean-François Alcover, Jun 15 2019 *)
  • Sage
    def A036244(n):
        if n == 1: return 1
        return 2^n*gamma(n+1/2)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1)/sqrt(pi)
    [round(A036244(n).n(100)) for n in (1..20)] # Peter Luschny, Sep 11 2014
    

Formula

a(n) = a(n-1)*(2*n-1) + a(n-2); a(0) = 0, a(1) = 1.
E.g.f.: sinh(1-(1-2*x)^(1/2))/(1-2*x)^(1/2). - Vladeta Jovovic, Jan 30 2004
E.g.f.: cosh(1-(1-2*x)^(1/2))/(1-2*x) + sinh(1-(1-2*x)^(1/2))/((1-2*x)^(3/2)).
E.g.f. G(0)/(1-2*x) where G(k)= 1 + 2*x/((2*k+1)*(1-2*x+sqrt(1-2*x))+(2*k+1)*(4*x^2-2*x)/(-1+2*x+sqrt(1-2*x) + (2*k+2)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 01 2012
a(n) = Sum_{k=0..floor((n-1)/2)} 2^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k-1/2,k+1/2). Cf. A058798. - Peter Bala, Aug 01 2013
a(n) ~ (exp(2)-1)*2^(n-1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Oct 05 2013
a(n) = A001147(n)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1) for n >= 2. - Peter Luschny, Sep 11 2014
a(n) = i*(BesselK[1/2,1]*BesselI[n+1/2,-1] - BesselI[1/2,-1]*BesselK[n+1/2,1]) for n>=0 (where a(0) = 0). - G. C. Greubel, Apr 18 2015
a(n) = A025164(-1-n) for all n in Z. - Michael Somos, Sep 27 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
More terms from Benoit Cloitre, Dec 20 2002
More terms from Vladeta Jovovic, Jan 30 2004

A349004 Decimal expansion of lim_{n->infinity} B(2*n, n)/n^(2*n), where B(n, x) is the n-th Bernoulli polynomial.

Original entry on oeis.org

3, 1, 3, 0, 3, 5, 2, 8, 5, 4, 9, 9, 3, 3, 1, 3, 0, 3, 6, 3, 6, 1, 6, 1, 2, 4, 6, 9, 3, 0, 8, 4, 7, 8, 3, 2, 9, 1, 2, 0, 1, 3, 9, 4, 1, 2, 4, 0, 4, 5, 2, 6, 5, 5, 5, 4, 3, 1, 5, 2, 9, 6, 7, 5, 6, 7, 0, 8, 4, 2, 7, 0, 4, 6, 1, 8, 7, 4, 3, 8, 2, 6, 7, 4, 6, 7, 9, 2, 4, 1, 4, 8, 0, 8, 5, 6, 3, 0, 2, 9, 4, 6, 7, 9, 4, 7
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 05 2021

Keywords

Comments

Asymptotic expansion: B(2*n,n) / n^(2*n) ~ c0 + c1/n + c2/n^2 + ..., where
c0 = A349004
c1 = -0.11332842437985451266688985513574347679739396134203607414578687657...
c2 = -0.02939332883129837328682967905833985820907100422772261310141242364...
In general, for k>=1, B(k*n,n) / n^(k*n) ~ k/(exp(k) - 1).

Examples

			0.313035285499331303636161246930847832912013941240452655543152967567084...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; funs[n_] := BernoulliB[2 n, n]/n^(2 n); Do[Print[N[Sum[(-1)^(m + j)*funs[j*Floor[1000/m]] * j^(m - 1)/(j - 1)!/(m - j)!, {j, 1, m}], 110]], {m, 10, 100, 10}]
    RealDigits[2/(E^2 - 1), 10, 110][[1]]

Formula

Equals 2/(exp(2)-1).
From Peter Luschny, Nov 05 2021: (Start)
Equals lim_{n->oo} (1/n) * Sum_{k=0..n-1} B(2*n, 1 + k/n) by J. L. Raabe's multiplication theorem.
Equals -2 * lim_{n->oo} HurwitzZeta(1 - 2*n, n) * n^(1 - 2*n). (End)
Equals A073747 - 1. - Alois P. Heinz, Nov 05 2021
Equals Sum_{k>=1} tanh(1/2^k)/2^k (Bell, 2018). - Amiram Eldar, Apr 12 2022

A280093 Pierce Expansion of coth(1).

Original entry on oeis.org

1, 3, 16, 38, 42, 139, 168, 385, 633, 942, 1728, 3017, 3842, 17453, 32989, 39408, 177334, 268130, 822437, 1522942, 3247926, 5937944, 22736433, 34285758, 51598089, 57736381, 105470828, 173010552, 541826347, 1758595979, 1803356572, 3331293851, 3545862229
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2016

Keywords

Crossrefs

Cf. A073747 (coth(1)).

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Coth[1] , 7!], 50]

A307178 Decimal expansion of coth(1/2).

Original entry on oeis.org

2, 1, 6, 3, 9, 5, 3, 4, 1, 3, 7, 3, 8, 6, 5, 2, 8, 4, 8, 7, 7, 0, 0, 0, 4, 0, 1, 0, 2, 1, 8, 0, 2, 3, 1, 1, 7, 0, 9, 3, 7, 3, 8, 6, 0, 2, 1, 5, 0, 7, 9, 2, 2, 7, 2, 5, 3, 3, 5, 7, 4, 1, 1, 9, 2, 9, 6, 0, 8, 7, 6, 3, 4, 7, 8, 3, 3, 3, 9, 4, 8, 6, 5, 7, 4, 4, 0, 9, 4, 1, 8, 8, 0, 9, 7, 5, 0, 1, 1, 5, 3, 0, 9, 2, 4, 0, 4, 7, 7, 1, 6, 1, 4, 0, 8, 0, 9, 1, 7, 0
Offset: 1

Views

Author

Terry D. Grant, Mar 27 2019

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			2.163953413738... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))).
		

Crossrefs

Cf. A016825 (continued fraction), A073333, A073747 (coth(1)).

Programs

  • Mathematica
    RealDigits[Coth[1/2], 10, 120][[1]] (* or *) BesselI[-1/2, 1/2]/BesselI[1/2, 1/2]
  • PARI
    cotanh(1/2) \\ Michel Marcus, Mar 28 2019

Formula

Equals (exp(1)+1)/(exp(1)-1).
Equals (BesselI(3/2,1/2)/BesselI(1/2,1/2))+2.
Equals BesselI(-1/2,1/2)/BesselI(1/2,1/2).
Equals 2 * Sum_{k>=0} B(2*k)/(2*k)!, where B(2*k) = A000367(k)/A002445(k) are the Bernoulli numbers. - Amiram Eldar, Nov 25 2020
Equals 2 * A073333 + 1. - Antonio Graciá Llorente, Jan 21 2024

A346205 Decimal expansion of solution to LambertW(-x) - LambertW(-1,-x) = 2.

Original entry on oeis.org

2, 2, 8, 8, 9, 8, 9, 4, 8, 1, 9, 6, 1, 7, 8, 6, 4, 1, 2, 3, 6, 6, 3, 6, 1, 2, 5, 3, 7, 2, 2, 0, 5, 5, 3, 5, 6, 3, 4, 2, 6, 2, 8, 2, 7, 1, 8, 1, 4, 6, 2, 6, 2, 3, 6, 6, 7, 6, 7, 7, 7, 6, 6, 1, 4, 4, 4, 1, 3, 2, 0, 3, 0, 2, 2, 3, 1, 9, 6, 9, 7, 1, 3, 6, 7, 8, 3, 1, 5, 3, 2, 3, 7, 3, 9, 7, 7, 1, 5, 7, 3, 3, 6, 3, 1, 3, 4, 6, 6, 6
Offset: 0

Views

Author

Gleb Koloskov, Jul 10 2021

Keywords

Examples

			0.2288989481961786412366361253722...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(135)); 2/(Exp(2)-1)*Exp(2/(1-Exp(2))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    x/.FindRoot[LambertW[-x]-LambertW[-1,-x]==2, {x, 0.1, 0.3}, WorkingPrecision -> 110]
    RealDigits[2/(E^2-1)*Exp[2/(1-E^2)], 10, 135][[1]] (* G. C. Greubel, Jun 11 2024 *)
  • PARI
    exp(-cotanh(1))/sinh(1)
    
  • SageMath
    numerical_approx(2/(e^2-1)*exp(2/(1-e^2)), digits=135) # G. C. Greubel, Jun 11 2024

Formula

Equals exp(-coth(1))/sinh(1) = exp(-A073747)/A073742.
Equals (coth(1)-1)*exp(1-coth(1)) = (A073747-1)*exp(1-A073747).
Equals (coth(1)+1)/exp(1+coth(1)) = (A073747+1)/exp(1+A073747).
Equals 2/(e^2-1)*exp(2/(1-e^2)) = 2/(A072334^2-1)*exp(2/(1-A072334^2)).

A384962 Decimal expansion of coth(2*Pi).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 6, 9, 7, 4, 7, 0, 9, 0, 3, 5, 6, 1, 6, 2, 3, 3, 1, 2, 1, 6, 3, 5, 6, 0, 3, 6, 6, 8, 3, 6, 4, 6, 7, 9, 6, 7, 5, 8, 0, 6, 9, 0, 0, 2, 4, 7, 6, 3, 8, 8, 8, 3, 7, 2, 1, 2, 2, 2, 2, 2, 2, 7, 7, 2, 9, 8, 7, 6, 5, 6, 7, 0, 1, 2, 1, 8, 6, 8, 6, 6, 7, 1, 0, 5, 6, 7, 3, 6, 5, 1, 4, 3, 2, 2
Offset: 1

Views

Author

Jason Bard, Jun 13 2025

Keywords

Examples

			1.0000069747090356162331216356036683646796758069002476...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Coth[2*Pi], 10, 100][[1]]

A279906 Decimal expansion of the number whose continued fraction expansion consists of the even numbers.

Original entry on oeis.org

2, 2, 4, 0, 1, 9, 3, 7, 2, 3, 8, 7, 0, 0, 8, 9, 7, 4, 1, 1, 0, 5, 2, 2, 0, 6, 4, 1, 7, 2, 9, 8, 2, 9, 7, 7, 2, 0, 2, 7, 2, 4, 6, 8, 6, 7, 2, 9, 0, 3, 9, 3, 6, 5, 3, 5, 4, 4, 7, 7, 7, 6, 2, 0, 4, 2, 5, 3, 8, 9, 0, 7, 7, 2, 5, 4, 2, 1, 5, 9, 9, 2, 8, 8, 4, 6, 3, 7, 5, 1, 0, 4, 1, 2, 4, 9, 5, 3, 9, 6, 7, 8, 2, 8, 5
Offset: 1

Views

Author

Robert G. Wilson v, Dec 26 2016

Keywords

Examples

			2.2401937238700897411052206417298297720272468672903936535447776204253890772...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FromContinuedFraction[ 2Range[ 38]], 10, 111]
    RealDigits[ BesselI[0, 1]/BesselI[1, 1], 10, 111] (* Robert G. Wilson v, Feb 17 2017 *)
Previous Showing 11-20 of 23 results. Next