cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 80 results. Next

A316725 Generalized 27-gonal (or icosiheptagonal) numbers: m*(25*m - 23)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 24, 27, 73, 78, 147, 154, 246, 255, 370, 381, 519, 532, 693, 708, 892, 909, 1116, 1135, 1365, 1386, 1639, 1662, 1938, 1963, 2262, 2289, 2611, 2640, 2985, 3016, 3384, 3417, 3808, 3843, 4257, 4294, 4731, 4770, 5230, 5271, 5754, 5797, 6303, 6348, 6877, 6924, 7476, 7525, 8100, 8151, 8749, 8802
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 27.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Partial sums of A317323. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), this sequence (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,24,27,73];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 16 2018
  • Maple
    a:= n-> (m-> m*(25*m-23)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 11 2018
  • Mathematica
    CoefficientList[Series[-x (x^2 + 23x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 53}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 24, 27, 73, 78, 147}, 53] (* Robert G. Wilson v, Jul 28 2018; corrected by Georg Fischer, Apr 03 2019 *)
    nn=30; Sort[Table[n (25 n - 23) / 2, {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 11 2018
    

Formula

From Colin Barker, Jul 11 2018: (Start)
G.f.: x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(25*n + 46)/8 for n even.
a(n) = (25*n - 21)*(n + 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 2*(25 + 23*Pi*cot(2*Pi/25))/529. - Amiram Eldar, Mar 01 2022

A316729 Generalized 30-gonal (or triacontagonal) numbers: m*(14*m - 13) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 27, 30, 82, 87, 165, 172, 276, 285, 415, 426, 582, 595, 777, 792, 1000, 1017, 1251, 1270, 1530, 1551, 1837, 1860, 2172, 2197, 2535, 2562, 2926, 2955, 3345, 3376, 3792, 3825, 4267, 4302, 4770, 4807, 5301, 5340, 5860, 5901, 6447, 6490, 7062, 7107, 7705, 7752, 8376, 8425, 9075, 9126, 9802, 9855
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 30.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Every sequence of generalized k-gonal numbers can be represented as vertices of a rectangular spiral constructed with line segments on the square grid, with k >= 5.
56*a(n) + 169 is a square. - Vincenzo Librandi, Jul 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 27 2018
Also partial sums of A317326. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), this sequence (k=30).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 26 x + x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 55}], x] (* Vincenzo Librandi, Jul 12 2018 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 27, 30, 82}, 47] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jul 16 2018

Formula

G.f.: x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3). - Vincenzo Librandi, Jul 12 2018
From Amiram Eldar, Mar 01 2022: (Start)
a(n) = (28*n*(n + 1) + 12*(2*n + 1)*(-1)^n - 12)/8.
a(n) = n*(7*n + 13)/2, if n is even, or (n + 1)*(7*n - 6)/2 otherwise.
Sum_{n>=1} 1/a(n) = 14/169 + Pi*cot(Pi/14)/13. (End)

Extensions

Duplicated term (1551) deleted by Colin Barker, Jul 16 2018

A165998 Denominators of Taylor series expansion of 1/(3*x)*log((1+x)/(1-x)^2).

Original entry on oeis.org

1, 6, 3, 12, 5, 18, 7, 24, 9, 30, 11, 36, 13, 42, 15, 48, 17, 54, 19, 60, 21, 66, 23, 72, 25, 78, 27, 84, 29, 90, 31, 96, 33, 102, 35, 108, 37, 114, 39, 120, 41, 126, 43, 132, 45, 138, 47, 144, 49, 150, 51, 156, 53, 162, 55, 168, 57, 174, 59, 180, 61, 186, 63, 192, 65, 198
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 03 2009

Keywords

Comments

Numerators are all 1.
Setting x=1/3 into 1/(3*x)*log((1+x)/(1-x)^2) = Sum_{k>=0} x^k/((2-(-1)^k)*(k+1)),
log(3) = Sum_{k>=0} 1/((2-(-1)^k)*(k+1)*3^k) = Sum_{k>=0} (9/(2k+1)+1/(2k+2))/9^(k+1) is obtained.
It appears that this is also the first differences of the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011
It appears that this is also A005408 and positive terms of A008588 interleaved. - Omar E. Pol, May 28 2012

Crossrefs

Programs

  • Magma
    [(2-(-1)^n)*(n+1): n in [0..350]]; // Vincenzo Librandi, Apr 04 2011
  • Mathematica
    LinearRecurrence[{0,2,0,-1}, {1, 6, 3, 12}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
  • PARI
    a(n)=(2-(-1)^n)*(n+1)
    

Formula

G.f.: (1+6*x+x^2)/(1-x^2)^2.
a(n) = (2-(-1)^n)*(n+1) (see PARI's code by Jaume Oliver Lafont).
a(2n)= 2n+1. a(2n+1) = 6*(n+1). - R. J. Mathar, Apr 02 2011
With offset 1 this sequence is multiplicative (in fact, a generalized totient function): a(p^e) = p^e for any odd prime p and a(2^e) = 3*2^e for e >= 1. - Charles R Greathouse IV, Mar 09 2015
With offset 1, Dirichlet g.f.: zeta(s-1) * (1 + 2^(2-s)). - Amiram Eldar, Oct 25 2023

A016802 a(n) = (4*n)^2.

Original entry on oeis.org

0, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 1600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056, 7744, 8464, 9216, 10000, 10816, 11664, 12544, 13456, 14400, 15376, 16384, 17424, 18496, 19600, 20736, 21904, 23104, 24336, 25600, 26896, 28224
Offset: 0

Views

Author

Keywords

Comments

A bisection of A016742. Sequence arises from reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Also, sequence found by reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

Formula

a(n) = 16*n^2 = 16*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 8*A001105(n) = 4*A016742(n) = 2*A139098(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 16*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/192.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/4)/(Pi/4).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/4)/(Pi/4) = 2*sqrt(2)/Pi (A112628). (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 16*x*(1 + x)/(1-x)^3.
E.g.f.: 16*x*(1 + x)*exp(x).
a(n) = n*A008598(n) = A195146(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A195152 Square array read by antidiagonals with T(n,k) = n*((k+2)*n-k)/2, n=0, +- 1, +- 2,..., k>=0.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 4, 5, 3, 1, 0, 9, 7, 6, 4, 1, 0, 9, 12, 10, 7, 5, 1, 0, 16, 15, 15, 13, 8, 6, 1, 0, 16, 22, 21, 18, 16, 9, 7, 1, 0, 25, 26, 28, 27, 21, 19, 10, 8, 1, 0, 25, 35, 36, 34, 33, 24, 22, 11, 9, 1, 0, 36, 40, 45, 46, 40, 39, 27, 25, 12, 10, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also, column k lists the partial sums of the column k of A195151. The first differences in row n are always the n-th term of the triangular numbers repeated 0,0,1,1,3,3,6,6,... ([0,0] together with A008805).
Also, for k >= 1, this is a table of generalized polygonal numbers since column k lists the generalized m-gonal numbers, where m = k+4, for example: if k = 1 then m = 5, so the column 1 lists the generalized pentagonal numbers A001318 (see example).

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,...
.  4,   5,   6,   7,   8,   9,  10,  11,  12,  13,...
.  4,   7,  10,  13,  16,  19,  22,  25,  28,  31,...
.  9,  12,  15,  18,  21,  24,  27,  30,  33,  36,...
.  9,  15,  21,  27,  33,  39,  45,  51,  57,  63,...
. 16,  22,  28,  34,  40,  46,  52,  58,  64,  70,...
. 16,  26,  36,  46,  56,  66,  76,  86,  96, 106,...
. 25,  35,  45,  55,  65,  75,  85,  95, 105, 115,...
. 25,  40,  55,  70,  85, 100, 115, 130, 145, 160,...
...
		

Crossrefs

Column 0 gives A008794, except its first term.

Formula

T(n,k) = (k+2)*n*(n+1)/8+(k-2)*((2*n+1)*(-1)^n-1)/16, n >= 0 and k >= 0. - Omar E. Pol, Oct 01 2011

A010006 Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.

Original entry on oeis.org

1, 18, 66, 146, 258, 402, 578, 786, 1026, 1298, 1602, 1938, 2306, 2706, 3138, 3602, 4098, 4626, 5186, 5778, 6402, 7058, 7746, 8466, 9218, 10002, 10818, 11666, 12546, 13458, 14402, 15378, 16386, 17426, 18498, 19602, 20738, 21906, 23106, 24338, 25602, 26898
Offset: 0

Views

Author

N. J. A. Sloane, mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 66, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Cf. A206399. For the coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C_3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50). Cf. A137513.

Programs

Formula

a(0)=1, a(n) = 16*n^2 + 2, n >= 1.
G.f.: (1+x)*(1+14*x+x^2)/(1-x)^3.
G.f. for coordination sequence of C_n lattice: (1/(1-z)^n)*Sum_{i=0..n} binomial(2*n, 2*i)*z^i.
E.g.f.: (x*(x+1)*16+2)*e^x - 1. - Gopinath A. R., Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=66, a(3)=146. - Harvey P. Dale, Oct 15 2012
G.f. for sequence with interpolated zeros: cosh(6*arctanh(x)) = (1/2)*( ((1 - x)/(1 + x))^3 + ((1 + x)/(1 - x))^3) = 1 + 18*x^2 + 66*x^4 + 146*x^6 + .... More generally, cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. Note that exp(t*arctanh(x)) is the e.g.f. for the Mittag_Leffler polynomials. See A137513. - Peter Bala, Apr 09 2017
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(2)/16*Pi*coth( Pi*sqrt(2)/4) = 1.095237238050... - R. J. Mathar, May 07 2024
a(n) = 2*A081585(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069129(n)+A069129(n+1). - R. J. Mathar, May 07 2024

A195146 Concentric 16-gonal numbers.

Original entry on oeis.org

0, 1, 16, 33, 64, 97, 144, 193, 256, 321, 400, 481, 576, 673, 784, 897, 1024, 1153, 1296, 1441, 1600, 1761, 1936, 2113, 2304, 2497, 2704, 2913, 3136, 3361, 3600, 3841, 4096, 4353, 4624, 4897, 5184, 5473, 5776, 6081, 6400, 6721, 7056, 7393, 7744, 8097, 8464
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric hexadecagonal numbers or concentric hexakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 16, ..., and the same line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Main axis, perpendicular to A033996 in the same spiral.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (8*n^2 + 3*(-1)^n - 3)/2;
a(n) = -a(n-1) + 8*n^2 - 8*n + 1. (End)
G.f. -x*(1+14*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi^2/96 + tan(sqrt(3)*Pi/4)*Pi/(8*sqrt(3)). - Amiram Eldar, Jan 16 2023

A195850 Column 6 of array A195825. Also column 1 of triangle A195840. Also 1 together with the row sums of triangle A195840.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 36, 38, 44, 54, 67, 77, 83, 86, 89, 95, 107, 128, 152, 173, 186, 194, 202, 216, 242, 281, 328, 368, 396, 415, 434, 464, 514, 588, 672, 748, 803, 844
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 7 (mod 8). - Peter Bala, Dec 10 2020

Crossrefs

Formula

G.f.: Product_{k>=1} 1/((1 - x^(8*k))*(1 - x^(8*k-1))*(1 - x^(8*k-7))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(n)/2) / (4*sqrt(2-sqrt(2))*n). - Vaclav Kotesovec, Aug 14 2017
a(n) = a(n-1) + a(n-7) - a(n-10) - a(n-22) + + - - (with the convention a(n) = 0 for negative n), where 1, 7, 10, 22, ... is the sequence of generalized 10-gonal numbers A074377. - Peter Bala, Dec 10 2020

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A211970
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. (if k>=1) with a(0)=1,
. if k >= 0]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
The partial sums of column 0 give A015128. - Omar E. Pol, Feb 09 2014

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
...
		

Crossrefs

For another version see A195825.

Formula

T(n,k) = A211971(n), if k = 0.
T(n,k) = A195825(n,k), if k >= 1.

A141759 a(n) = 16n^2 + 32n + 15.

Original entry on oeis.org

15, 63, 143, 255, 399, 575, 783, 1023, 1295, 1599, 1935, 2303, 2703, 3135, 3599, 4095, 4623, 5183, 5775, 6399, 7055, 7743, 8463, 9215, 9999, 10815, 11663, 12543, 13455, 14399, 15375, 16383, 17423, 18495, 19599, 20735, 21903, 23103, 24335, 25599
Offset: 0

Views

Author

Miklos Kristof, Sep 15 2008

Keywords

Comments

Via the partial fraction decomposition 1/((4n+3)*(4n+5)) = (1/2) *(1/(4n+3) -1/(4n+5)) we find 2*Sum_{n>=0} (-1)^n/a(n) = 2*Sum_{n>=0} (-1)^n/( (4*n+3)*(4*n+5) ) = 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ... = (1/1 + 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ..)-1 = Sum_{n>=0} (-1)^n/A016813(n) + Sum_{n>=0} (-1)^n/A004767(n) -1 = -1 + Sum_{n>=0} b(n)/n^1 where b(n) = 1, 0, 1, 0, -1, 0, -1, 0 is a sequence with period length 8, one of the Dirichlet L-series modulo 8. The alternating sum becomes -1 +L(m=8,r=4,s=1) = Pi*sqrt(2)/4-1 = A093954 - 1.
Pi = 4 - 8*Sum(1/a(n)) noted by Bronstein-Semendjajew for the variant a(n) = (4n-1)*(4n+1) starting at n=1. - Frank Ellermann, Sep 18 2011
The identity (16*n^2-1)^2 - (64*n^2-8)*(2*n)^2 = 1 can be written as a(n)^2 - A158487(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 09 2012
Sequence found by reading the line from 15, in the direction 15, 63,... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
Essentially the least common multiple of 4*n+1 and 4*n-1. - Colin Barker, Feb 11 2017

References

  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed., 1965, ch. 4.1.8.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.

Crossrefs

Programs

Formula

G.f.: (15+18*x-x^2)/(1-x)^3.
E.g.f.: (15+48*x+16*x^2)*exp(x).
a(n) = a(-n-2) = A016802(n+1) - 1. - Bruno Berselli, Sep 22 2011
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = Pi/(2*sqrt(2)) (A093954).
Product_{n>=0} (1 - 1/a(n)) = sin(Pi/(2*sqrt(2))). (End)

Extensions

Formula indices corrected by R. J. Mathar, Jul 07 2009
Previous Showing 31-40 of 80 results. Next