cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 80 results. Next

A274757 Numbers k such that 6*k+1 is a triangular number (A000217).

Original entry on oeis.org

0, 9, 15, 42, 54, 99, 117, 180, 204, 285, 315, 414, 450, 567, 609, 744, 792, 945, 999, 1170, 1230, 1419, 1485, 1692, 1764, 1989, 2067, 2310, 2394, 2655, 2745, 3024, 3120, 3417, 3519, 3834, 3942, 4275, 4389, 4740, 4860, 5229, 5355, 5742, 5874, 6279, 6417
Offset: 1

Views

Author

Colin Barker, Jul 04 2016

Keywords

Comments

Numbers of the type floor(3*m*(m+1)/4) for which floor(3*m*(m+1)/4) = 3*floor(m*(m+1)/4). A014601 lists the values of m. - Bruno Berselli, Jan 13 2017
Numbers of the form 3*k*(4*k + 1) for k in Z. - Peter Bala, Nov 21 2024

Crossrefs

Cf. A000096 (k+1), A074377 (2*k+1), A045943 (3*k+1), A274681 (4*k+1), A085787 (5*k+1).
Cf. similar sequences listed in A274830.

Programs

  • Mathematica
    Table[3 (2 n - 1) (2 n + (-1)^n - 1)/4, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,9,15,42,54},50] (* Harvey P. Dale, Apr 13 2025 *)
  • PARI
    isok(n) = ispolygonal(6*n+1, 3)
    
  • PARI
    select(n->ispolygonal(6*n+1, 3), vector(7000, n, n-1))
    
  • PARI
    concat(0, Vec(3*x^2*(3+2*x+3*x^2)/((1-x)^3*(1+x)^2) + O(x^60)))

Formula

G.f.: 3*x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = 3*(2*n - 1)*(2*n + (-1)^n - 1)/4. Therefore:
a(n) = 3*n*(2*n - 1)/2 for n even,
a(n) = 3*(n-1)*(2*n - 1)/2 for n odd.

A274830 Numbers k such that 7*k+1 is a triangular number (A000217).

Original entry on oeis.org

0, 2, 5, 11, 17, 27, 36, 50, 62, 80, 95, 117, 135, 161, 182, 212, 236, 270, 297, 335, 365, 407, 440, 486, 522, 572, 611, 665, 707, 765, 810, 872, 920, 986, 1037, 1107, 1161, 1235, 1292, 1370, 1430, 1512, 1575, 1661, 1727, 1817, 1886, 1980, 2052, 2150, 2225
Offset: 1

Views

Author

Colin Barker, Jul 08 2016

Keywords

Comments

From Peter Bala, Nov 21 2024: (Start)
Numbers of the form n*(7*n + 3)/2 for n in Z. Cf. A057570.
The sequence terms occur as the exponents in the expansion of Product_{n >= 1} (1 - x^(7*n)) * (1 + x^(7*n-2)) * (1 + x^(7*n-5)) = 1 + x^2 + x^5 + x^11 + x^17 + x^27 + x^36 + .... Cf. A363800. (End)

Crossrefs

Cf. similar sequences where k*n+1 is a triangular number: A000096 (k=1), A074377 (k=2), A045943 (k=3), A274681 (k=4), A085787 (k=5), A274757 (k=6).

Programs

  • Mathematica
    Table[(14 (n - 1) n + (2 n - 1) (-1)^n + 1)/16, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
  • PARI
    select(n->ispolygonal(7*n+1, 3), vector(3000, n, n-1))
    
  • PARI
    concat(0, Vec(x^2*(2+3*x+2*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))

Formula

G.f.: x^2*(2 + 3*x + 2*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = (14*(n - 1)*n + (2*n - 1)*(-1)^n + 1)/16. Therefore:
a(n) = n*(7*n - 6)/8 for n even,
a(n) = (n - 1)*(7*n - 1)/8 for n odd.
E.g.f.: (x*(7*x -1)*cosh(x) + (7*x^2 + x + 1)*sinh(x))/8. - Stefano Spezia, Nov 26 2024

Extensions

Edited by Bruno Berselli, Jul 08 2016

A303301 Square array T(n,k) read by antidiagonals upwards in which row n is obtained by taking the general formula for generalized n-gonal numbers: m*((n - 2)*m - n + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and n >= 5. Here n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, -3, 0, 1, -2, 0, 0, 1, -1, 1, -8, 0, 1, 0, 2, -5, -3, 0, 1, 1, 3, -2, 0, -15, 0, 1, 2, 4, 1, 3, -9, -8, 0, 1, 3, 5, 4, 6, -3, -2, -24, 0, 1, 4, 6, 7, 9, 3, 4, -14, -15, 0, 1, 5, 7, 10, 12, 9, 10, -4, -5, -35, 0, 1, 6, 8, 13, 15, 15, 16, 6, 5, -20, -24, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, -5, -9, -48
Offset: 0

Views

Author

Omar E. Pol, Jun 08 2018

Keywords

Comments

Note that the formula mentioned in the definition gives several kinds of numbers, for example:
Row 0 and row 1 give A317300 and A317301 respectively.
Row 2 gives A001057 (canonical enumeration of integers).
Row 3 gives 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Row 4 gives A008794 (squares repeated) except the initial zero.
Finally, for n >= 5 row n gives the generalized k-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------
n\m  Seq. No.    0   1  -1   2  -2   3   -3    4   -4    5   -5
------------------------------------------------------------------
0    A317300:    0,  1, -3,  0, -8, -3, -15,  -8, -24, -15, -35...
1    A317301:    0,  1, -2,  1, -5,  0,  -9,  -2, -14,  -5, -20...
2    A001057:    0,  1, -1,  2, -2,  3,  -3,   4,  -4,   5,  -5...
3   (A008795):   0,  1,  0,  3,  1,  6,   3,  10,   6,  15,  10...
4   (A008794):   0,  1,  1,  4,  4,  9,   9,  16,  16,  25,  25...
5    A001318:    0,  1,  2,  5,  7, 12,  15,  22,  26,  35,  40...
6    A000217:    0,  1,  3,  6, 10, 15,  21,  28,  36,  45,  55...
7    A085787:    0,  1,  4,  7, 13, 18,  27,  34,  46,  55,  70...
8    A001082:    0,  1,  5,  8, 16, 21,  33,  40,  56,  65,  85...
9    A118277:    0,  1,  6,  9, 19, 24,  39,  46,  66,  75, 100...
10   A074377:    0,  1,  7, 10, 22, 27,  45,  52,  76,  85, 115...
11   A195160:    0,  1,  8, 11, 25, 30,  51,  58,  86,  95, 130...
12   A195162:    0,  1,  9, 12, 28, 33,  57,  64,  96, 105, 145...
13   A195313:    0,  1, 10, 13, 31, 36,  63,  70, 106, 115, 160...
14   A195818:    0,  1, 11, 14, 34, 39,  69,  76, 116, 125, 175...
15   A277082:    0,  1, 12, 15, 37, 42,  75,  82, 126, 135, 190...
...
		

Crossrefs

Columns 0..2 are A000004, A000012, A023445.
Column 3 gives A001477 which coincides with the row numbers.
Main diagonal gives A292551.
Row 0-2 gives A317300, A317301, A001057.
Row 3 gives 0 together with A008795.
Row 4 gives A008794.
For n >= 5, rows n gives the generalized n-gonal numbers: A001318 (n=5), A000217 (n=6), A085787 (n=7), A001082 (n=8), A118277 (n=9), A074377 (n=10), A195160 (n=11), A195162 (n=12), A195313 (n=13), A195818 (n=14), A277082 (n=15), A274978 (n=16), A303305 (n=17), A274979 (n=18), A303813 (n=19), A218864 (n=20), A303298 (n=21), A303299 (n=22), A303303 (n=23), A303814 (n=24), A303304 (n=25), A316724 (n=26), A316725 (n=27), A303812 (n=28), A303815 (n=29), A316729 (n=30).
Cf. A317302 (a similar table but with polygonal numbers).

Programs

  • Mathematica
    t[n_, r_] := PolygonalNumber[n, If[OddQ@ r, Floor[(r + 1)/2], -r/2]]; Table[ t[n - r, r], {n, 0, 11}, {r, 0, n}] // Flatten (* also *)
    (* to view the square array *)  Table[ t[n, r], {n, 0, 15}, {r, 0, 10}] // TableForm (* Robert G. Wilson v, Aug 08 2018 *)

Formula

T(n,k) = A194801(n-3,k) if n >= 3.

A081056 Number of partitions of 2n+1 in which no parts are multiples of 4.

Original entry on oeis.org

1, 3, 6, 12, 22, 38, 64, 105, 166, 258, 395, 592, 876, 1280, 1846, 2636, 3728, 5222, 7256, 10006, 13696, 18624, 25169, 33808, 45164, 60022, 79366, 104457, 136870, 178572, 232044, 300368, 387366, 497804, 637568, 813910, 1035792, 1314214
Offset: 0

Views

Author

Michael Somos, Mar 03 2003

Keywords

Comments

Euler transform of period 16 sequence [3,0,2,1,2,1,3,0,3,1,2,1,2,0,3,0,...].

Crossrefs

Programs

Formula

G.f.: (sum_{n>=0} x^A074377(n))/(sum_n (-x)^n^2).
a(n) = A001935(2n+1).
a(n) ~ exp(Pi*sqrt(n)) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

A108211 a(n) = 16*n^2 + 1.

Original entry on oeis.org

17, 65, 145, 257, 401, 577, 785, 1025, 1297, 1601, 1937, 2305, 2705, 3137, 3601, 4097, 4625, 5185, 5777, 6401, 7057, 7745, 8465, 9217, 10001, 10817, 11665, 12545, 13457, 14401, 15377, 16385, 17425, 18497, 19601, 20737, 21905, 23105, 24337, 25601, 26897, 28225, 29585
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 15 2005

Keywords

Comments

Area of a Maltese cross conventionally inscribed in a 5n X 5n-grid.
Areas of some other crosses, each made from unit squares, as shown in Weisstein's illustrations: Greek Cross = x-pentomino = 5. Latin Cross = 6. Saint Andrew's cross = crux decussata = 9. Saint Anthony's Cross = tau cross = crux commissa = 10. Gaullist Cross = cross of Lorraine or patriarchal cross = 13. Papal Cross = 22. - Jonathan Vos Post, Jun 18 2005
The identity (16*n^2 + 1)^2 - (64*n^2 + 8)*(2*n)^2 = 1 can be written as a(n)^2 - A158488(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 08 2012
Sequence found by reading the line from 17, in the direction 17, 65, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
Conjecture: a(n) = floor(1/(1/(4*n) - log(2) + 1/(n+1) + 1/(n+2) + ... + 1/(2*n))). - Clark Kimberling, Sep 09 2014

Crossrefs

Programs

Formula

a(n) = A002522(4*n) = A016802(n) + 1.
G.f.: x*(17+14*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 08 2012
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*coth(Pi/4)/8 - 1/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - Pi*csch(Pi/4)/8. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/4)*sinh(Pi/sqrt(8)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/4)*csch(Pi/4). (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(16*x^2 + 16*x + 1) - 1.
a(n) = A053755(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A143838 Ulam's spiral (SSW spoke).

Original entry on oeis.org

1, 22, 75, 160, 277, 426, 607, 820, 1065, 1342, 1651, 1992, 2365, 2770, 3207, 3676, 4177, 4710, 5275, 5872, 6501, 7162, 7855, 8580, 9337, 10126, 10947, 11800, 12685, 13602, 14551, 15532, 16545, 17590, 18667, 19776, 20917, 22090, 23295, 24532
Offset: 1

Views

Author

Keywords

Comments

Also sequence found by reading the segment (1, 22) together with the line from 22, in the direction 22, 75, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

Programs

Formula

a(n) = 16*n^2 - 27*n + 12, n>0. - R. J. Mathar, Sep 04 2008
G.f.: x*(1 + 19*x + 12*x^2)/(1-x)^3. - Colin Barker, Aug 03 2012
E.g.f.: -12 + (12 - 11*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019

A143839 Ulam's spiral (SSE spoke).

Original entry on oeis.org

1, 24, 79, 166, 285, 436, 619, 834, 1081, 1360, 1671, 2014, 2389, 2796, 3235, 3706, 4209, 4744, 5311, 5910, 6541, 7204, 7899, 8626, 9385, 10176, 10999, 11854, 12741, 13660, 14611, 15594, 16609, 17656, 18735, 19846, 20989, 22164, 23371, 24610
Offset: 1

Views

Author

Keywords

Comments

Also sequence found by reading the line from 1, in the direction 1, 24, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

Crossrefs

Programs

Formula

a(n) = 16*n^2 - 25*n + 10. - R. J. Mathar, Sep 04 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1) = 1, a(2) = 24, a(3) = 79. - Harvey P. Dale, May 26 2012
G.f.: x*(1 + 21*x + 10*x^2)/(1-x)^3. - Harvey P. Dale, May 26 2012
E.g.f.: exp(x)*(10 - 9*x + 16*x^2) - 9. - Stefano Spezia, Oct 07 2019

A143854 Ulam's spiral (WSW spoke).

Original entry on oeis.org

1, 20, 71, 154, 269, 416, 595, 806, 1049, 1324, 1631, 1970, 2341, 2744, 3179, 3646, 4145, 4676, 5239, 5834, 6461, 7120, 7811, 8534, 9289, 10076, 10895, 11746, 12629, 13544, 14491, 15470, 16481, 17524, 18599, 19706, 20845, 22016, 23219, 24454
Offset: 1

Views

Author

Keywords

Comments

Also sequence found by reading the segment (1, 20) together with the line from 20, in the direction 20, 71, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

Programs

Formula

From Colin Barker, Aug 03 2012: (Start)
a(n) = 14 - 29*n + 16*n^2.
G.f.: x*(1 + 17*x + 14*x^2)/(1-x)^3. (End)
E.g.f.: -14 + (14 - 13*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019

A143855 Ulam's spiral (ESE spoke).

Original entry on oeis.org

1, 10, 51, 124, 229, 366, 535, 736, 969, 1234, 1531, 1860, 2221, 2614, 3039, 3496, 3985, 4506, 5059, 5644, 6261, 6910, 7591, 8304, 9049, 9826, 10635, 11476, 12349, 13254, 14191, 15160, 16161, 17194, 18259, 19356, 20485, 21646, 22839, 24064
Offset: 1

Views

Author

Vladimir Joseph Stephan Orlovsky, Sep 03 2008, Sep 04 2008

Keywords

Comments

Also sequence found by reading the segment (1, 10) together with the line from 10, in the direction 10, 51, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

Programs

Formula

a(n) = 16*n^2 - 39*n + 24. - R. J. Mathar, Sep 08 2008
G.f.: x*(1 + 7*x + 24*x^2)/(1-x)^3. - Colin Barker, Aug 03 2012
E.g.f.: -24 + (24 - 23*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019

A143856 Ulam's spiral (ENE spoke).

Original entry on oeis.org

1, 12, 55, 130, 237, 376, 547, 750, 985, 1252, 1551, 1882, 2245, 2640, 3067, 3526, 4017, 4540, 5095, 5682, 6301, 6952, 7635, 8350, 9097, 9876, 10687, 11530, 12405, 13312, 14251, 15222, 16225, 17260, 18327, 19426, 20557, 21720, 22915, 24142
Offset: 1

Views

Author

Keywords

Comments

Also sequence found by reading the segment (1, 12) together with the line from 12, in the direction 12, 55,..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

Programs

Formula

a(n) = 16*n^2 - 37*n + 22. - R. J. Mathar, Sep 08 2008
G.f. x*(1 + 9*x + 22*x^2)/(1-x)^3. - R. J. Mathar, Oct 31 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 10 2012
E.g.f.: -22 + (22 - 21*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019
Previous Showing 51-60 of 80 results. Next