A087903 Triangle read by rows of the numbers T(n,k) (n > 1, 0 < k < n) of set partitions of n of length k which do not have a proper subset of parts with a union equal to a subset {1,2,...,j} with j < n.
1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 48, 16, 1, 1, 57, 202, 140, 25, 1, 1, 120, 747, 916, 325, 36, 1, 1, 247, 2559, 5071, 3045, 651, 49, 1, 1, 502, 8362, 25300, 23480, 8260, 1176, 64, 1, 1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1, 1, 2036, 82509, 525608, 998830, 749154, 253764, 40944, 3105, 100, 1
Offset: 2
Examples
T(2,1)=1 for {12}; T(3,1)=1, T(3,2) = 1 for {123}; {13|2}; T(4,1)=1, T(4,2)=4, T(4,3)=1 for {1234}; {14|23}, {13|24}, {124|3}, {134|2}; {14|2|3}. From _Philippe Deléham_, Jul 16 2007: (Start) Triangle begins: 1; 1, 1; 1, 4, 1; 1, 11, 9, 1; 1, 26, 48, 16, 1; 1, 57, 202, 140, 25, 1; 1, 120, 747, 916, 325, 36, 1; 1, 247, 2559, 5071, 3045, 651, 49, 1; 1, 502, 8362, 25300, 23480, 8260, 1176, 64, 1; 1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1; ... Triangle T(n,k), 0 <= k <= n, given by [1,0,2,0,3,0,4,0,...] DELTA [0,1,0,1,0,1,0,...] begins: 1; 1, 0; 1, 1, 0; 1, 4, 1, 0; 1, 11, 9, 1, 0; 1, 26, 48, 16, 1, 0; 1, 57, 202, 140, 25, 1, 0; 1, 120, 747, 916, 325, 36, 1, 0; 1, 247, 2559, 5071, 3045, 651, 49, 1, 0; 1, 502, 8362, 25300, 23480, 8260, 1176, 64, 1, 0; 1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1, 0; ... (End)
Links
- G. C. Greubel, Rows n = 2..52 of the triangle, flattened
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Mercedes H. Rosas and Bruce E. Sagan, Symmetric functions in noncommuting variables, arXiv:math/0208168 [math.CO], 2002, 2004.
- Yves Le Jan, Loop clusters on complete graphs, arXiv:2504.16976 [math.PR], 2025. See p. 6.
- Margarete C. Wolf, Symmetric Functions of Non-commutative Elements, Duke Math. J., 2 (1936), 626-637.
Programs
-
Maple
A := proc(n,k) option remember; local j,ell; if n<=0 or k>=n then 0; elif k=1 or k=n-1 then 1; else S2(n-1,k)+add(add((k-ell-1)*A(n-j-1,k-ell)*S2(j,ell),ell=0..k-1),j=0..n-2); fi; end: S2 := (n,k)->if n<0 or k>n then 0; elif k=n or k=1 then 1 else k*S2(n-1,k)+S2(n-1,k-1); fi:
-
Mathematica
nmax = 12; t[n_, k_] := t[n, k] = StirlingS2[n-1, k] + Sum[ (k-d-1)*t[n-j-1, k-d]*StirlingS2[j, d], {d, 0, k-1}, {j, 0, n-2}]; Flatten[ Table[ t[n, k], {n, 2, nmax}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 04 2011, after given formula *)
-
SageMath
@CachedFunction # T = A087903 def T(n,k): return stirling_number2(n-1, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) ) flatten([[T(n, k) for k in (1..n-1)] for n in (2..14)]) # G. C. Greubel, Jun 21 2022
Formula
T(n, n-1) = T(n,1) = 1.
T(n, n-2) = (n-2)^2.
T(n, 2) = A000295(n).
T(n, k) = S2(n-1, k) + Sum_{j=0..n-2} Sum_{d=0..k-1} (k-d-1)*T(n-j-1, k-d)*S2(j, d), where S2(n, k) is the Stirling number of the second kind.
Sum_{k = 1..n-1} T(n, k) = A074664(n). - Philippe Deléham, Jun 13 2004
G.f.: 1-1/(1+add(add(q^n t^k S2(n, k), k=1..n), n >= 1)) where S2(n, k) are the Stirling numbers of the 2nd kind A008277. - Mike Zabrocki, Sep 03 2005
Comments