cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A099503 Expansion of 1/(1-4*x+x^3).

Original entry on oeis.org

1, 4, 16, 63, 248, 976, 3841, 15116, 59488, 234111, 921328, 3625824, 14269185, 56155412, 220995824, 869714111, 3422701032, 13469808304, 53009519105, 208615375388, 820991693248, 3230957253887, 12715213640160, 50039862867392
Offset: 0

Views

Author

Paul Barry, Oct 20 2004

Keywords

Comments

A transform of A000302 under the mapping g(x) ->(1/(1+x^3)) * g(x/(1+x^3)).

Crossrefs

Programs

  • Magma
    [n le 3 select 4^(n-1) else 4*Self(n-1) -Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 03 2023
    
  • Mathematica
    CoefficientList[Series[1/(1-4x+x^3),{x,0,30}],x]  (* Harvey P. Dale, Apr 01 2011 *)
    LinearRecurrence[{4,0,-1}, {1,4,16}, 30] (* G. C. Greubel, Aug 03 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A099503
        if (n<3): return 4^n
        else: return 4*a(n-1) - a(n-3)
    [a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023

Formula

a(n) = 4*a(n-1) - a(n-3).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*4^(n-3*k).

A099504 Expansion of 1/(1-5*x+x^3).

Original entry on oeis.org

1, 5, 25, 124, 615, 3050, 15126, 75015, 372025, 1844999, 9149980, 45377875, 225044376, 1116071900, 5534981625, 27449863749, 136133246845, 675131252600, 3348206399251, 16604898749410, 82349362494450, 408398606072999
Offset: 0

Views

Author

Paul Barry, Oct 20 2004

Keywords

Comments

A transform of A000351 under the mapping g(x)->(1/(1+x^3))g(x/(1+x^3)).

Crossrefs

Programs

  • Magma
    [n le 3 select 5^(n-1) else 5*Self(n-1) -Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 03 2023
    
  • Maple
    A099504:=n->sum(binomial(n-2*i, i)*(-1)^i*5^(n-3*i), i=0..floor(n/3)); seq(A099504(n), n=0..30); # Wesley Ivan Hurt, Dec 03 2013
  • Mathematica
    Table[Sum[Binomial[n-2*i,i]*(-1)^i*5^(n-3*i), {i,0,Floor[n/3]}], {n,0, 30}] (* Wesley Ivan Hurt, Dec 03 2013 *)
    LinearRecurrence[{5,0,-1}, {1,5,25}, 30] (* G. C. Greubel, Aug 03 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A099504
        if (n<3): return 5^n
        else: return 5*a(n-1) - a(n-3)
    [a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023

Formula

a(n) = 5*a(n-1) - a(n-3).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*5^(n-3*k).

A225682 Triangle read by rows: T(n,k) (0 <= k <= n) = chi(k)*binomial(n,k), where chi(k) = 1,-1,0 according as k == 0,1,2 mod 3.

Original entry on oeis.org

1, 1, -1, 1, -2, 0, 1, -3, 0, 1, 1, -4, 0, 4, -1, 1, -5, 0, 10, -5, 0, 1, -6, 0, 20, -15, 0, 1, 1, -7, 0, 35, -35, 0, 7, -1, 1, -8, 0, 56, -70, 0, 28, -8, 0, 1, -9, 0, 84, -126, 0, 84, -36, 0, 1, 1, -10, 0, 120, -210, 0, 210, -120, 0, 10, -1, 1, -11, 0, 165, -330, 0, 462, -330, 0, 55, -11, 0, 1, -12, 0, 220, -495, 0, 924, -792, 0, 220, -66, 0, 1
Offset: 0

Views

Author

Keywords

Comments

Corresponding to row n of this triangle, define a generating function G_n(x) = 1/(Sum_{k=0..n} T(n,k)*x^k).
Then G_n(x) is the g.f. for the number of words of length n over an alphabet of size n which do not contain any strictly decreasing factor (consecutive subword) of length 3.
For example, G_2, G_3, G_4, G_5, G_6 are g.f.'s for A000079, A076264, A072335, A200781, A200782.

Examples

			Triangle begins:
[1],
[1, -1],
[1, -2, 0],
[1, -3, 0, 1],
[1, -4, 0, 4, -1],
[1, -5, 0, 10, -5, 0],
[1, -6, 0, 20, -15, 0, 1],
[1, -7, 0, 35, -35, 0, 7, -1],
[1, -8, 0, 56, -70, 0, 28, -8, 0],
...
		

Crossrefs

Programs

  • Maple
    f:=proc(n) local k,s;
    s:=k->if k mod 3 = 0 then 1 elif k mod 3 = 1 then -1 else 0; fi;
    [seq(s(k)*binomial(n,k),k=0..n)];
    end;
    [seq(f(n),n=0..12)];
  • Mathematica
    chi[k_] := Switch[Mod[k, 3], 0, 1, 1, -1, 2, 0]; t[n_, k_] := chi[k]*Binomial[n, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

A018919 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,9).

Original entry on oeis.org

3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639, 954538564968
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 4 X 4 matrix = row by row (1,1,1,1)(1,1,1,0)(1,1,0,0)(1,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n))=M^n*A where A is the vector (1,1,1,1) then a(n)=y(n+1). - Benoit Cloitre, Apr 02 2002
Not to be confused with the Pisot T(3,9) sequence, which is A000244. - R. J. Mathar, Feb 13 2016

Crossrefs

Cf. A076264.

Programs

  • Magma
    Tiv:=[3,9]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    CoefficientList[Series[- (x^2 - 3)/(x^3 - 3 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 16 2013 *)
    RecurrenceTable[{a[1] == 3, a[2] == 9, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 30}] (* Bruno Berselli, Feb 17 2016 *)
    LinearRecurrence[{3,0,-1},{3,9,26},30] (* Harvey P. Dale, Feb 06 2019 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(3, 9, 30) \\ Colin Barker, Feb 14 2016
    

Formula

For n>1, a(n) = ceiling(a(n-1)^2/a(n-2)) - 1.
For n>2, a(n) = 3*a(n-1) - a(n-3).
G.f.: -(x^2-3) / (x^3-3*x+1). - Colin Barker, Dec 13 2012

A052545 Expansion of (1-x)^2/(1-3*x+x^3).

Original entry on oeis.org

1, 1, 4, 11, 32, 92, 265, 763, 2197, 6326, 18215, 52448, 151018, 434839, 1252069, 3605189, 10380728, 29890115, 86065156, 247814740, 713554105, 2054597159, 5915976737, 17034376106, 49048531159, 141229616740, 406654474114
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

(1, 4, 11, 32, ...) = INVERT transform of (1, 3, 4, 5, 6, 7, ...).

Crossrefs

Cf. A215448. First differences of A052536.

Programs

  • GAP
    a:=[1,1,4];; for n in [4..40] do a[n]:=3*a[n-1]-a[n-3]; od; a; # G. C. Greubel, May 08 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)^2/(1-3*x+x^3) )); // G. C. Greubel, May 08 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Z)),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3,0,-1}, {1,1,4}, 40] (* G. C. Greubel, May 08 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)^2/(1-3*x+x^3)) \\ G. C. Greubel, May 08 2019
    
  • Python
    TOP = 33
    a = [1]*TOP
    a[2]=4
    for n in range(3,TOP):
        print(a[n-3], end=',')
        a[n] = 3*a[n-1] - a[n-3]
    # Alex Ratushnyak, Aug 10 2012
    
  • Sage
    ((1-x)^2/(1-3*x+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
    

Formula

G.f.: (1-x)^2/(1-3*x+x^3).
a(n) = 3*a(n-1) - a(n-3), with a(0)=a(1)=1, a(2)=4.
a(n) = Sum_{alpha = RootOf(1-3*x+x^3)} (-1/9 * (-1+2*alpha^2-2*alpha) * alpha^(-1-n)).
a(n) = A076264(n) - 2*A076264(n-1) + A076264(n-2). - R. J. Mathar, Nov 28 2011

A120747 Sequence relating to the 11-gon (or hendecagon).

Original entry on oeis.org

0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1

Views

Author

Gary W. Adamson, Jul 01 2006

Keywords

Comments

The hendecagon is an 11-sided polygon. The preferred word in the OEIS is 11-gon.
The lengths of the diagonals of the regular 11-gon are r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5, where r[1] = 1 is the length of the edge.
The value of limit(a(n)/a(n-1),n=infinity) equals the longest diagonal r[5].
The a(n) equal the matrix elements M^n[1,2], where M = Matrix([[1,1,1,1,1], [1,1,1,1,0], [1,1,1,0,0], [1,1,0,0,0], [1,0,0,0,0]]). The characteristic polynomial of M is (x^5 - 3x^4 - 3x^3 + 4x^2 + x - 1) with roots x1 = -r[4]/r[3], x2 = -r[2]/r[4], x3 = r[1]/r[2], x4 = r[3]/r[5] and x5 = r[5]/r[1].
Note that M^4*[1,0,0,0,0] = [55, 50, 41, 29, 15] which are all terms of the 5-wave sequence A038201. This is also the case for the terms of M^n*[1,0,0,0,0], n>=1.

Examples

			From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
  r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
  r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
    0,   0,   0,   0,   1, ...
    1,   1,   1,   1,   1, ...
    1,   2,   3,   4,   5, ...
    5,   9,  12,  14,  15, ...
   15,  29,  41,  50,  55, ...
   55, 105, 146, 175, 190, ...
  190, 365, 511, 616, 671, ... (End)
		

Crossrefs

From Johannes W. Meijer, Aug 03 2011: (Start)
Cf. A006358 (T(n+2,1) and T(n+1,5)), A069006 (T(n+1,2)), A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
Cf. A000045 (m=2; pentagon or 5-gon); A006356, A006054 and A038196 (m=3: heptagon or 7-gon); A006357, A076264, A091024 and A038197 (m=4: enneagon or 9-gon); A006359, A069007, A069008, A069009, A070778 (m=6; tridecagon or 13-gon); A025030 (m=7: pentadecagon or 15-gon); A030112 (m=8: heptadecagon or 17-gon). (End)

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
    
  • Maple
    nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
  • SageMath
    def A120747_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
    A120747_list(40) # G. C. Greubel, Nov 13 2022

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
From Johannes W. Meijer, Aug 03 2011: (Start)
a(n) = T(n,4) with T(n,k) = Sum_{k1 = 6-k..6} T(n-1, k1), T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1, n>=1 and 1 <= k <= 5. [Steinbach]
Sum_{k=1..5} T(n,k)*r[k] = r[5]^n, n>=1. [Steinbach]
r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5. [Kappraff]
Sum_{k=1..5} T(n,k) = A006358(n-1).
Limit_{n -> 00} T(n,k)/T(n-1,k) = r[5], 1 <= k <= 5.
sequence(sequence( T(n,k), k=2..5), n>=1) = A038201(n-4).
G.f.: (x^2*(x - x1)*(x - x2))/((x - x3)*(x - x4)*(x - x5)*(x - x6)*(x - x7)) with x1 = phi, x2 = (1-phi), x3 = r[1] - r[3], x4 = r[3] - r[5], x5 = r[5] - r[4], x6 = r[4] - r[2], x7 = r[2], where phi = (1 + sqrt(5))/2 is the golden ratio A001622. (End)

Extensions

Edited and information added by Johannes W. Meijer, Aug 03 2011

A052963 a(0)=1, a(1)=2, a(2)=5, a(n) = 3*a(n+2) - a(n+3).

Original entry on oeis.org

1, 2, 5, 14, 40, 115, 331, 953, 2744, 7901, 22750, 65506, 188617, 543101, 1563797, 4502774, 12965221, 37331866, 107492824, 309513251, 891207887, 2566130837, 7388879260, 21275429893, 61260158842, 176391597266, 507899361905
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals the INVERT transform of the Pell sequence prefaced with a "1": (1, 1, 2, 5, 12, 29, ...). - Gary W. Adamson, May 01 2009

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Prod(Sequence(Union(Prod(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3,0,-1},{1,2,5},30] (* Harvey P. Dale, Dec 26 2015 *)

Formula

G.f.: -(-1+x+x^2)/(1-3*x+x^3).
a(n) = Sum((1/9)*(1+2*_alpha+_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z+_Z^3)). [in Maple notation]
a(n)/a(n-1) tends to 2.8793852... = 1/(2*cos(4*Pi/9)), a root of x^3 -3x^2 + 1 (the characteristic polynomial of the 3 X 3 matrix). The latter polynomial is a factor (with (x + 1)) of the 4th degree polynomial of A066170: x^4 - 2x^3 - 3x^2 + x + 1. Given the 3 X 3 matrix [0 1 0 / 0 0 1 / -1 0 3], (M^n)*[1 1 1] = [a(n-2), a(n-1), a(n)]. - Gary W. Adamson, Feb 29 2004
a(n) = A076264(n)-A076264(n-1)-A076264(n-2). - R. J. Mathar, Feb 27 2019

Extensions

More terms from James Sellers, Jun 05 2000

A200781 G.f.: 1/(1-5*x+10*x^3-5*x^4).

Original entry on oeis.org

1, 5, 25, 115, 530, 2425, 11100, 50775, 232275, 1062500, 4860250, 22232375, 101698250, 465201250, 2127983750, 9734098125, 44526969375, 203681015625, 931704015625, 4261920875000, 19495429065625, 89178510250000, 407931862578125, 1866014626609375, 8535765175875000, 39045399804843750, 178606512071015625, 817004981729375000
Offset: 0

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Comments

Number of words of length n over an alphabet of size 5 which do not contain any strictly decreasing factor (consecutive subword) of length 3. For alphabets of size 2, 3, 4, 6 see A000079, A076264, A072335, A200782.
Equivalently, number of 0..4 arrays x(0..n-1) of n elements without any two consecutive increases.

Examples

			Some solutions for n=5:
..1....3....4....0....1....0....4....0....2....1....4....1....2....2....4....4
..3....4....4....2....1....0....3....3....1....4....1....1....4....4....3....3
..3....1....0....2....0....2....0....3....3....0....4....3....0....1....4....4
..2....0....2....4....4....0....3....2....0....0....3....2....0....2....1....3
..4....4....2....2....0....3....3....2....1....0....4....1....3....1....0....2
		

Crossrefs

The g.f. corresponds to row 5 of triangle A225682.
Column 4 of A200785.

Programs

  • PARI
    Vec(1/(1-5*x+10*x^3-5*x^4) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = 5*a(n-1) - 10*a(n-3) + 5*a(n-4).

Extensions

Edited by N. J. A. Sloane, May 21 2013

A215448 a(0)=1, a(1)=0, a(n) = a(n-1) + a(n-2) + Sum_{i=0...n-1} a(i).

Original entry on oeis.org

1, 0, 2, 5, 15, 43, 124, 357, 1028, 2960, 8523, 24541, 70663, 203466, 585857, 1686908, 4857258, 13985917, 40270843, 115955271, 333879896, 961368845, 2768151264, 7970573896, 22950352843, 66082907265, 190278147899, 547884090854, 1577569365297, 4542429947992
Offset: 0

Views

Author

Alex Ratushnyak, Aug 10 2012

Keywords

Comments

For the general recurrence X(n) = 3*X(n-1) - X(n-3) we get Sum_{k=3..n} X(k) = 3*Sum_{k=2..n-1} X(k) - Sum_{k=0..n-3} X(k), which implies the following summation formula: X(n) - X(n-1) - X(n-2) - X(2) + X(1) + X(0) = Sum_{k=2..n-1} X(k). Similarly from the formula X(n) + X(n-3) = 3*X(n-1) we deduce the following relations: Sum_{k=0..2*n-1} X(3*k) = 3*Sum_{k=0..n-1} X(6*k+2), Sum_{k=0..2*n-1} X(3*k+1) = 3*Sum_{k=1..n} X(6*k), and Sum_{k=0..2*n-1} X(3*k+2) = 3*Sum_{k=1..n} X(6*k-2). Lastly from the formula X(n)-X(n-1)=(X(n-1)-X(n-3))+X(n-1) we obtain the relations: Sum_{k=2..2*n+1} (-1)^(k-1)*X(k) = X(2*n) - X(0) + Sum_{k=1..n} X(2*k) and Sum_{k=3..2n} (-1)^k*X(k) = X(2*n-1) - X(1) + Sum_{k=2..n} X(2*k-1). - Roman Witula, Aug 27 2012

Crossrefs

Cf. A052536: same formula, seed {0, 1}, first term removed.
Cf. A122100: same formula, seed {0,-1}, first two terms removed.
Cf. A052545: same formula, seed {1, 1}.

Programs

  • Mathematica
    LinearRecurrence[{3,0,-1},{1,0,2},30] (* Harvey P. Dale, Jan 26 2017 *)
  • Python
    a = [1]*33
    a[1]=0
    sum = a[0]+a[1]
    for n in range(2,33):
        print(a[n-2], end=', ')
        a[n] = a[n-1] + a[n-2] + sum
        sum += a[n]

Formula

a(0)=1, a(1)=0, for n>=2, a(n) = a(n-1) + a(n-2) + (a(0)+...+a(n-1)).
Conjecture: a(n) = +3*a(n-1) -a(n-3) = A076264(n) -3 *A076264(n-1) +2*A076264(n-2). G.f. (2*x-1)*(x-1) / ( 1-3*x+x^3 ). - R. J. Mathar, Aug 11 2012
Proof of the above conjecture: we have a(n) - a(n-1) = a(n-1) + a(n-2) + (a(0) + ... + a(n-1)) - a(n-2) - a(n-3) - (a(0) + ... + a(n-2)), which after simple algebra implies a(n) - a(n-1) = 2*a(n-1) - a(n-3), so the Mathar's formula holds true (see also Witula's comment above). - Roman Witula, Aug 27 2012

A119851 Triangle read by rows: T(n,k) is the number of ternary words of length n containing k 012's (n >= 0, 0 <= k <= floor(n/3)).

Original entry on oeis.org

1, 3, 9, 26, 1, 75, 6, 216, 27, 622, 106, 1, 1791, 387, 9, 5157, 1350, 54, 14849, 4566, 267, 1, 42756, 15102, 1179, 12, 123111, 49113, 4833, 90, 354484, 157622, 18798, 536, 1, 1020696, 500520, 70317, 2775, 15, 2938977, 1575558, 255231, 13068, 135
Offset: 0

Views

Author

Emeric Deutsch, May 26 2006

Keywords

Comments

Row n has 1+floor(n/3) terms.
Sum of entries in row n is 3^n (A000244).
Sum_{k>=0} k*T(n,k) = (n-2)*3^(n-3) = A027741(n-1).

Examples

			T(4,1)=6 because we have 0012, 0120, 0121, 0122, 1012 and 2012.
Triangle starts:
    1;
    3;
    9;
   26,   1;
   75,   6;
  216,  27;
  622, 106, 1;
		

Crossrefs

Cf. A000244, A076264 (=T(n,0)), A119852 (=T(n,1)), A027741.

Programs

  • Maple
    G:=1/(1-3*z+z^3-t*z^3): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 15 do seq(coeff(P[n],t,j),j=0..floor(n/3)) od; # yields sequence in triangular form
  • PARI
    { T(n,k) = sum(j=0,n-3*k, if((n-3*k-j)%2,0, binomial(-(k-1),j) *
    binomial(j,(n-3*k-j)/2) * (-3)^((3*j+3*k-n)/2) )) } \\ Max Alekseyev

Formula

T(n,k) = Sum_{j=0..n-3k} binomial(-(k-1),j) * binomial(j,(n-3k-j)/2) * (-3)^((3j+3k-n)/2). - Max Alekseyev
G.f.: G(t,z) = 1/(1-3z+z^3-tz^3).
Recurrence relation: T(n,k) = 3*T(n-1,k) - T(n-3,k) + T(n-3,k-1) for n >= 3.
Previous Showing 11-20 of 23 results. Next