cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 108 results. Next

A356793 Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.

Original entry on oeis.org

1, 6, 5, 6, 1, 8, 4, 6, 5, 3, 9, 5
Offset: 0

Views

Author

Artur Jasinski, Sep 04 2022

Keywords

Comments

Alternative definition: sum of squares of reciprocals of primes whose distance from the next prime is equal to 2.
Convergence table:
k A001359(k) Sum_{j=1..k} 1/A001359(j)^2
10000000 3285916169 0.165618465394273171950874120818
20000000 7065898967 0.165618465394707600197099741096
30000000 11044807451 0.165618465394836120901019351544
40000000 15151463321 0.165618465394895965582366015390
50000000 19358093939 0.165618465394930089884704869090
60000000 23644223231 0.165618465394951950670948192842
Using the Hardy-Littlewood prediction of the density of twin primes (see A347278), the contribution to the sum after the last entry in the table above can be estimated as 9.056*10^(-14), making the infinite sum ~= 0.16561846539504... . - Hugo Pfoertner, Sep 28 2022

Examples

			0.165618465395...
		

Crossrefs

Extensions

Data extended to ...3, 9, 5 by Hugo Pfoertner, Sep 28 2022

A138329 List of strictly non-palindromic twin primes {p, p+2}.

Original entry on oeis.org

137, 139, 4337, 4339, 8291, 8293, 9419, 9421, 10937, 10939, 13757, 13759, 19427, 19429, 20981, 20983, 36011, 36013, 38327, 38329, 43397, 43399, 59441, 59443, 71327, 71329, 74717, 74719, 76871, 76873, 90437, 90439, 91571, 91573, 117239
Offset: 1

Views

Author

Karl Hovekamp, Mar 14 2008

Keywords

Comments

The strictly non-palindromic twin primes are a part of the normal twin primes. See the list of twin primes A077800 and A016038 for the strictly non-palindromic numbers.

References

  • Karl Hovekamp, Palindromzahlen in adischen Zahlensystemen, 2004

Crossrefs

Formula

Twin primes, where both numbers {p} and {p+2} are strictly non-palindromic.

A140445 List of prime pairs of form p, p + 10.

Original entry on oeis.org

3, 13, 7, 17, 13, 23, 19, 29, 31, 41, 37, 47, 43, 53, 61, 71, 73, 83, 79, 89, 97, 107, 103, 113, 127, 137, 139, 149, 157, 167, 163, 173, 181, 191, 223, 233, 229, 239, 241, 251, 271, 281, 283, 293, 307, 317, 337, 347, 349, 359, 373, 383, 379, 389, 409, 419, 421
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Crossrefs

Cf. A023203 (1st bisection), A092146 (2nd bisection).
Cf. prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), this sequence (k=10), A156323 (k=12), A140446 (k=14), A272815 (k=16), A156328 (k=18), A272816 (k=20), A140447 (k=22).

Programs

  • Maple
    i: 1: for k from 1 to 1200 do if isprim (k) and isprim (k+10) then a [ i ] : = k : a [ i + 1]: = k + 10 : i = i + 2 fi od : seq (a [ n ], n=1..i-1);
  • Mathematica
    Flatten[{#,#+10}&/@Select[Prime[Range[100]],PrimeQ[#+10]&]]  (* Harvey P. Dale, Apr 11 2011 *)

Extensions

Corrected by D. S. McNeil, Dec 10 2009

A176821 List of 4-tuples of twin primes q, p, p+2 and q+2 such that 2*q

Original entry on oeis.org

5, 11, 13, 7, 29, 59, 61, 31, 659, 1319, 1321, 661, 809, 1619, 1621, 811, 2129, 4259, 4261, 2131, 2549, 5099, 5101, 2551, 3329, 6659, 6661, 3331, 3389, 6779, 6781, 3391, 5849, 11699, 11701, 5851, 6269, 12539, 12541, 6271, 10529, 21059, 21061, 10531
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 26 2010, May 01 2010, May 07 2010

Keywords

Comments

The first number q in each quadruplet is in A069142 (equivalent to selecting twin primes q which are also Sophie-Germain primes). [From R. J. Mathar, May 06 2010]

Crossrefs

Extensions

Corrected (2131 replaced by 3331) by R. J. Mathar, May 06 2010

A182483 a(n) is the least m such that A182482(m) = A001359(n), the n-th twin prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 4, 17, 9, 23, 25, 15, 8, 11, 19, 20, 45, 47, 13, 29, 14, 24, 77, 87, 95, 50, 103, 107, 22, 27, 137, 46, 143, 21, 34, 43, 175, 59, 91, 48, 41, 71, 215, 31, 44, 119, 121, 247, 62, 67, 54, 139, 283, 287, 149, 39, 313, 161, 65, 37, 169, 347, 116
Offset: 2

Views

Author

Vladimir Shevelev, May 01 2012

Keywords

Comments

a(n) exists for every n>=2.

Crossrefs

Programs

  • Mathematica
    t = Table[k = 0; While[p = 6*k*n - 1; ! (PrimeQ[p] && PrimeQ[p + 2]), k++]; p, {n, 1000}]; tp = Select[Prime[Range[1000]], PrimeQ[# + 2] &]; t2 = {}; found = True; n = 2; While[found, pos = Position[t, tp[[n]], 1, 1]; If[pos == {}, found = False, AppendTo[t2, pos[[1, 1]]]; n++]]; t2 (* T. D. Noe, May 02 2012 *)

A232878 Twin prime pairs which sum to perfect squares.

Original entry on oeis.org

17, 19, 71, 73, 881, 883, 1151, 1153, 2591, 2593, 3527, 3529, 4049, 4051, 15137, 15139, 20807, 20809, 34847, 34849, 46817, 46819, 69191, 69193, 83231, 83233, 103967, 103969, 112337, 112339, 149057, 149059, 176417, 176419, 179999, 180001, 206081, 206083
Offset: 1

Views

Author

Gary Croft, Dec 01 2013

Keywords

Comments

All square roots of twin prime sums in this sequence (see A152786) are multiples of 6.
Digital roots of all pairs in this sequence are {8,1}.
Twin primes of the form 18n^2 +- 1. - Charles R Greathouse IV, Aug 26 2014

Examples

			17+19 = 36, square root of 36 = 6; 71+73 = 144, square root of 144 = 12.
		

Crossrefs

Programs

  • Mathematica
    t = {}; Do[ps = {2 n^2 - 1, 2 n^2 + 1}; If[PrimeQ[ps[[1]]] && PrimeQ[ps[[2]]], AppendTo[t, ps]], {n, 1000}]; Flatten[t] (* T. D. Noe, Dec 03 2013 *)
  • PARI
    for(n=1,1e3, if(isprime(t=18*n^2-1) && isprime(t+2), print1(t", "t+2", "))) \\ Charles R Greathouse IV, Aug 26 2014

Formula

a(2*n) = a(2*n-1) + 2, a(2*n+1) = A069496(n).

A247856 Decimal expansion of the value of the continued fraction [0; 3, 5, 5, 7, 11, 13, 17, 19, ...] generated by twin primes.

Original entry on oeis.org

3, 1, 3, 2, 3, 3, 0, 8, 0, 9, 8, 6, 9, 4, 5, 9, 1, 2, 6, 3, 0, 7, 8, 6, 4, 8, 6, 4, 7, 2, 1, 7, 2, 8, 0, 0, 4, 3, 9, 2, 5, 1, 1, 7, 4, 5, 0, 5, 2, 2, 5, 3, 9, 7, 1, 7, 3, 2, 6, 8, 4, 8, 5, 4, 0, 4, 4, 3, 1, 4, 5, 9, 0, 8, 5, 0, 2, 0, 1, 0, 3, 6, 8, 3, 6, 9, 3, 8, 1, 0, 8, 9, 1, 2, 6, 2, 6, 7, 6, 9, 8
Offset: 0

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Examples

			0.313233080986945912630786486472172800439251174505225397...
		

Crossrefs

Programs

  • Mathematica
    twinPrimes = Select[{#, #+2}& /@ Prime[Range[100]], PrimeQ[Last[#]]&] // Flatten; u2 = FromContinuedFraction[Join[{0}, twinPrimes]]; RealDigits[u2, 10, 101] // First

A256386 Numbers m such that m-2, m-1, m+1, m+2 cannot all be represented in the form x*y + x + y for values x, y with x >= y > 1.

Original entry on oeis.org

2, 3, 4, 5, 8, 11, 59, 1319, 1619, 4259, 5099, 6659, 6779, 11699, 12539, 21059, 66359, 83219, 88259, 107099, 110879, 114659, 127679, 130199, 140759, 141959, 144539, 148199, 149519, 157559, 161339, 163859, 175079, 186479, 204599, 230939, 249539, 267959, 273899, 312839
Offset: 1

Views

Author

Alex Ratushnyak, Mar 31 2015

Keywords

Comments

Indices of terms surrounded by pairs of zeros in A255361.
Conjectures:
1. A255361(a(n)) > 0 for n > 4.
2. All terms > 8 are primes.
3. All terms > 8 are terms of these supersequences: A118072, A171667, A176821, A181602, A181669.
From Lamine Ngom, Feb 12 2022: (Start)
For n > 4, a(n) is not a term of A254636. This means that a(n)-2, a(n)-1, a(n)+1 and a(n)+2 are adjacent terms in A254636.
Number of terms < 10^k: 5, 7, 7, 13, 19, 96, 441, 2552, ...
Conjecture 2 would follow if we establish the equivalence "t is in sequence" <=> "t is a term of b(n): lesser of twin primes pair p and q such that (p - 1)/2 and (q + 1)/2 are also a pair of twin primes (A077800)".
It appears that b(n) = a(n) for n > 5. Verified for all terms < 10^9. (End)

Examples

			9, 10, 12, 13 cannot be represented as x*y + x + y, where x >= y > 1. Therefore 11 is in the sequence.
		

Crossrefs

Formula

a(n) = A158870(n-5) - 2, n > 5 (conjectured). - Lamine Ngom, Feb 12 2022

A272815 Prime pairs of the form (p, p+16).

Original entry on oeis.org

3, 19, 7, 23, 13, 29, 31, 47, 37, 53, 43, 59, 67, 83, 73, 89, 97, 113, 151, 167, 157, 173, 163, 179, 181, 197, 211, 227, 223, 239, 241, 257, 277, 293, 331, 347, 337, 353, 367, 383, 373, 389, 433, 449, 463, 479, 487, 503, 541, 557, 547, 563, 571
Offset: 1

Views

Author

Vincenzo Librandi, May 07 2016

Keywords

Comments

p and p+16 are not necessarily consecutive primes: (1831, 1847) is the first pair of consecutive primes that belongs to the sequence.

Examples

			The prime pairs are (3, 19), (7, 23), (13, 29) etc.
		

Crossrefs

Cf. prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), A140445 (k=10), A156323 (k=12), A140446 (k=14), this sequence (k=16), A156328 (k=18), A272816 (k=20), A140447 (k=22).

Programs

  • Magma
    &cat [[p,p+16]: p in PrimesUpTo(1000) | IsPrime(p+16)];
  • Mathematica
    Flatten[{#, # + 16}&/@Select[Prime[Range[200]], PrimeQ[# + 16] &]]

Formula

a(2n+1) = A049488(n+1).

A272816 Prime pairs of the form (p, p+20).

Original entry on oeis.org

3, 23, 11, 31, 17, 37, 23, 43, 41, 61, 47, 67, 53, 73, 59, 79, 83, 103, 89, 109, 107, 127, 131, 151, 137, 157, 173, 193, 179, 199, 191, 211, 251, 271, 257, 277, 263, 283, 293, 313, 311, 331, 317, 337, 347, 367, 353, 373, 359, 379, 389, 409, 401, 421
Offset: 1

Views

Author

Vincenzo Librandi, May 07 2016

Keywords

Comments

p and p+20 are not necessarily consecutive primes: (887, 907) is the first pair of consecutive primes that belongs to the sequence.

Examples

			The prime pairs are (3, 23), (11, 31), (17, 37) etc.
		

Crossrefs

Cf. similar sequences listed in A272815.
Prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), A140445 (k=10), A156323 (k=12), A140446 (k=14), A272815 (k=16), A156328 (k=18), this sequence (k=20), A140447 (k=22).

Programs

  • Magma
    &cat [[p, p+20]: p in PrimesUpTo(1000) | IsPrime(p+20)];
    
  • Mathematica
    Flatten[{#, # + 20}&/@Select[Prime[Range[200]], PrimeQ[# + 20] &]]
  • Python
    from gmpy2 import is_prime
    for n in range(1000):
       if(is_prime(n) and is_prime(n+20)):
          print('{}, {}'.format(n,n+20),end=', ')
    # Soumil Mandal, May 14 2016

Formula

a(2n+1) = A153419(n+1).

Extensions

Edited by Bruno Berselli, May 12 2016
Previous Showing 31-40 of 108 results. Next