cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A128908 Riordan array (1, x/(1-x)^2).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 4, 10, 6, 1, 0, 5, 20, 21, 8, 1, 0, 6, 35, 56, 36, 10, 1, 0, 7, 56, 126, 120, 55, 12, 1, 0, 8, 84, 252, 330, 220, 78, 14, 1, 0, 9, 120, 462, 792, 715, 364, 105, 16, 1, 0, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 22 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,2,-1/2,1/2,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Row sums give A088305. - Philippe Deléham, Nov 21 2007
Column k is C(n,2k-1) for k > 0. - Philippe Deléham, Jan 20 2012
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
T is the convolution triangle of the positive integers (see A357368). - Peter Luschny, Oct 19 2022

Examples

			The triangle T(n,k) begins:
   n\k  0    1    2    3    4    5    6    7    8    9   10
   0:   1
   1:   0    1
   2:   0    2    1
   3:   0    3    4    1
   4:   0    4   10    6    1
   5:   0    5   20   21    8    1
   6:   0    6   35   56   36   10    1
   7:   0    7   56  126  120   55   12    1
   8:   0    8   84  252  330  220   78   14    1
   9:   0    9  120  462  792  715  364  105   16    1
  10:   0   10  165  792 1716 2002 1365  560  136   18    1
  ... reformatted by _Wolfdieter Lang_, Jul 31 2017
From _Peter Luschny_, Mar 06 2022: (Start)
The sequence can also be seen as a square array read by upwards antidiagonals.
   1, 1,   1,    1,    1,     1,     1,      1,      1, ...  A000012
   0, 2,   4,    6,    8,    10,    12,     14,     16, ...  A005843
   0, 3,  10,   21,   36,    55,    78,    105,    136, ...  A014105
   0, 4,  20,   56,  120,   220,   364,    560,    816, ...  A002492
   0, 5,  35,  126,  330,   715,  1365,   2380,   3876, ... (A053126)
   0, 6,  56,  252,  792,  2002,  4368,   8568,  15504, ... (A053127)
   0, 7,  84,  462, 1716,  5005, 12376,  27132,  54264, ... (A053128)
   0, 8, 120,  792, 3432, 11440, 31824,  77520, 170544, ... (A053129)
   0, 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, ... (A053130)
    A27,A292, A389, A580,  A582, A1288, A10966, A10968, A165817       (End)
		

Crossrefs

Cf. A165817 (the main diagonal of the array).

Programs

  • Maple
    # Computing the rows of the array representation:
    S := proc(n,k) option remember;
    if n = k then 1 elif k < 0 or k > n then 0 else
    S(n-1, k-1) + 2*S(n-1, k) - S(n-2, k) fi end:
    Arow := (n, len) -> seq(S(n+k-1, k-1), k = 0..len-1):
    for n from 0 to 8 do Arow(n, 9) od; # Peter Luschny, Mar 06 2022
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n); # Peter Luschny, Oct 19 2022
  • Mathematica
    With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - x)^2/(1 - (2 + y)*x + x^2), {x, 0, nmax}, {y, 0, nmax}], x], y]] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, if(k==0, 0, binomial(n+k-1,2*k-1))), ", "))) \\ G. C. Greubel, Nov 22 2017
    
  • Python
    from functools import cache
    @cache
    def A128908(n, k):
        if n == k: return 1
        if (k <= 0 or k > n): return 0
        return A128908(n-1, k-1) + 2*A128908(n-1, k) - A128908(n-2, k)
    for n in range(10):
        print([A128908(n, k) for k in range(n+1)]) # Peter Luschny, Mar 07 2022
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i*T(k-1,n-i) for i in (1..n-k+1))
    A128908 = lambda n,k: T(k,n)
    for n in (0..10): print([A128908(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
    

Formula

T(n,0) = 0^n, T(n,k) = binomial(n+k-1, 2k-1) for k >= 1.
Sum_{k=0..n} T(n,k)*2^(n-k) = A002450(n) = (4^n-1)/3 for n>=1. - Philippe Deléham, Oct 19 2008
G.f.: (1-x)^2/(1-(2+y)*x+x^2). - Philippe Deléham, Jan 20 2012
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A001352(n), (-1)^(n+1)*A054888(n+1), (-1)^n*A008574(n), (-1)^n*A084103(n), (-1)^n*A084099(n), A163810(n), A000007(n), A088305(n) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Jan 20 2012
Riordan array (1, x/(1-x)^2). - Philippe Deléham, Jan 20 2012

A156308 Inverse of triangle S(n,m) defined by sequence A156290, n >= 1, 1 <= m <= n.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 20, 8, 1, 25, 50, 35, 10, 1, 36, 105, 112, 54, 12, 1, 49, 196, 294, 210, 77, 14, 1, 64, 336, 672, 660, 352, 104, 16, 1, 81, 540, 1386, 1782, 1287, 546, 135, 18, 1, 100, 825, 2640, 4290, 4004, 2275, 800, 170, 20, 1
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 07 2009

Keywords

Comments

From Wolfdieter Lang, Jun 26 2011: (Start)
This triangle S(n,m) appears as U_m(n) in the Knuth reference on p. 285. It is related to the Riordan triangle T_m(n) = A111125(n,m) by S(n,m) = A111125(n,m) - A111125(n-1,m), n >= m >= 1 (identity on p. 286).
Also, S(n,m)-S(n-1,m) = A111125(n-1,m-1), n >= 2, m >= 1 (identity on p. 286). (End)
These polynomials may be expressed in terms of the Faber polynomials of A263916 and are embedded in A127677 and A208513. - Tom Copeland, Nov 06 2015

Examples

			Triangle starts:
  n=1:  1;
  n=2:  4,  1;
  n=3:  9,  6,  1;
  n=4: 16, 20,  8,  1;
  ...
		

Crossrefs

Same as triangle A208513 with the first column truncated.
Columns: A000290 (m=1), A002415 (m=2), A040977 (m=3), A053347 (m=4), A054334 (m=5).

Programs

  • Magma
    [(n/k)*Binomial(n+k-1, 2*k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 01 2022
  • Mathematica
    S[m_] := Flatten[Table[k/j Binomial[k + j - 1, 2 j - 1], {k, 1, m}, {j, 1, k}]]
  • Sage
    flatten([[(n/k)*binomial(n+k-1, 2*k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 01 2022
    

Formula

S(n, m) = (n/m) * binomial(n + m - 1, 2*m - 1).
From Peter Bala, May 01 2014: (Start)
The n-th row o.g.f. is polynomial R(n,x) = 2/x*( T(n,(x + 2)/2) - 1 ), where T(n,x) is Chebyshev polynomial of the first kind. They form a divisibility sequence: if n divides m then R(n,x) divides R(m,x) in the ring Z[x].
R(2*n,x) = (x + 4)*U(n-1,(x + 2)/2)^2;
R(2*n + 1,x) = ( U(n,(x + 2)/2) + U(n-1,(x + 2)/2) )^2.
O.g.f.: Sum_{n >= 0} R(n,x)*z^n = z*(1 + z)/( (1 - z)*(1 - (x + 2)*z + z^2) ). (End)
The polynomial R(n,x) defined above satisfies (x + 1/x - 2) * R(n, x + 1/x - 2) = x^n + 1/x^n - 2. - Alexander Burstein, May 23 2021

Extensions

Edited by Max Alekseyev, Mar 05 2018

A030523 A convolution triangle of numbers obtained from A001792.

Original entry on oeis.org

1, 3, 1, 8, 6, 1, 20, 25, 9, 1, 48, 88, 51, 12, 1, 112, 280, 231, 86, 15, 1, 256, 832, 912, 476, 130, 18, 1, 576, 2352, 3276, 2241, 850, 183, 21, 1, 1280, 6400, 10976, 9424, 4645, 1380, 245, 24, 1, 2816, 16896, 34848, 36432, 22363, 8583, 2093, 316, 27, 1
Offset: 1

Views

Author

Keywords

Comments

a(n,m) := s1p(3; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle). Signed version: (-1)^(n-m)*a(n,m) := s1(3; n,m).
With offset 0, this is T(n,k) = Sum_{i=0..n} C(n,i)*C(i+k+1,2k+1). Binomial transform of A078812 (product of lower triangular matrices). - Paul Barry, Jun 22 2004
Subtriangle of the triangle T(n,k) given by (0, 3, -1/3, 4/3, 0, 0, 0, 0, 0, 0, 0, ... ) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2013

Examples

			{1}; {3,1}; {8,6,1}; {20,25,9,1}; {48,88,51,12,1}; ...
(0, 3, -1/3, 4/3, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1
0   1
0   3   1
0   8   6   1
0  20  25   9   1
0  48  88  51  12   1
...
- _Philippe Deléham_, Feb 20 2013
		

Crossrefs

Cf. A057682 (alternating row sums).

Programs

  • Mathematica
    a[n_, m_] := SeriesCoefficient[(1-2*x)^2/((x^2-x)*y + (1-2*x)^2) - 1, {x, 0, n}, {y, 0, m}]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 28 2015, after Vladimir Kruchinin *)

Formula

a(n, 1) = A001792(n-1).
Row sums = A039717(n).
a(n, m) = 2*(2*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
T(n,k) = 4*T(n-1,k) - 4*T(n-2,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Feb 20 2013
Sum_{k=1..n} T(n,k)*2^(k-1) = A140766(n). -Philippe Deléham, Feb 20 2013
G.f.: (1-2*x)^2/((x^2-x)*y+(1-2*x)^2)-1. - Vladimir Kruchinin, Apr 28 2015

A092276 Triangle read by rows: T(n,k) is the number of noncrossing trees with root degree equal to k.

Original entry on oeis.org

1, 2, 1, 7, 4, 1, 30, 18, 6, 1, 143, 88, 33, 8, 1, 728, 455, 182, 52, 10, 1, 3876, 2448, 1020, 320, 75, 12, 1, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 690690, 444015, 197340, 70840, 21252, 5313, 1078, 168, 18, 1
Offset: 1

Author

Emeric Deutsch, Feb 24 2004

Keywords

Comments

With offset 0, Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A006013. - Philippe Deléham, Jan 23 2010

Examples

			Triangle begins:
     1;
     2,    1;
     7,    4,    1;
    30,   18,    6,   1;
   143,   88,   33,   8,  1;
   728,  455,  182,  52, 10,  1;
  3876, 2448, 1020, 320, 75, 12, 1;
  ...
Top row of M^3 = (30, 18, 6, 1)
From _Peter Bala_, Nov 25 2024: (Start)
The transposed array as an infinite product of upper triangular arrays:
  /1 2 3 4 5 ... \/1            \/1              \       /1 2 7 30 143 ...\
  |  1 2 3 4 ... ||  1 2 3 4 ...||  1            |       |  1 4 18  88 ...|
  |    1 2 3 ... ||    1 2 3 ...||    1 2 3 4 ...| ... = |    1  6  33 ...|
  |      1 2 ... ||      1 2 ...||      1 2 3 ...|       |       1   8 ...|
  |        1 ... ||        1 ...||        1 2 ...|       |           1 ...|
  |          ... ||          ...||            ...|       |             ...|
Cf. A078812. (End)
		

Crossrefs

Row sums give sequence A001764.
Columns 1..5 are A006013, A006629, A006630, A006631, A233657.

Programs

  • Maple
    T := proc(n,k) if k=n then 1 else 2*k*binomial(3*n-k,n-k)/(3*n-k) fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := 2*k*Binomial[3*n-k, n-k]/(3*n-k); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
  • PARI
    T(n, k) = 2*k*binomial(3*n-k, n-k)/(3*n-k); \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = 2*k*binomial(3n-k, n-k)/(3n-k).
G.f.: 1/(1-t*z*g^2), where g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z) is the g.f. of the sequence A001764.
T(n, k) = Sum_{j>=1} j*T(n-1, k-2+j). - Philippe Deléham, Sep 14 2005
With offset 0, T(n,k) = ((n+1)/(k+1))*binomial(3n-k+1, n-k). - Philippe Deléham, Jan 23 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
Top row of M^(n-1) generates n-th row terms of triangle A092276. Leftmost terms of each row = A006013 starting (1, 2, 7, 30, 143, ...). (End)
Working with an offset of 0, the inverse array is the Riordan array ((1 - x)^2, x*(1 - x)^2). - Peter Bala, Apr 30 2024

A123967 Triangle read by rows: T(0,0)=1; for n >= 1 T(n,k) is the coefficient of x^k in the monic characteristic polynomial of the tridiagonal n X n matrix with main diagonal 5,5,5,... and sub- and superdiagonals 1,1,1,... (0 <= k <= n).

Original entry on oeis.org

1, -5, 1, 24, -10, 1, -115, 73, -15, 1, 551, -470, 147, -20, 1, -2640, 2828, -1190, 246, -25, 1, 12649, -16310, 8631, -2400, 370, -30, 1, -60605, 91371, -58275, 20385, -4225, 519, -35, 1, 290376, -501150, 374115, -157800, 41140, -6790, 693, -40, 1, -1391275, 2704755, -2313450, 1142730, -359275, 74571, -10220, 892, -45, 1
Offset: 0

Author

Gary W. Adamson and Roger L. Bagula, Oct 28 2006

Keywords

Comments

Riordan array (1/(1+5*x+x^2), x/(1+5*x+x^2)). - Philippe Deléham, Feb 03 2007
Chebyshev's S(n,x-5) polynomials (exponents of x in increasing order). - Philippe Deléham, Feb 22 2012
Row sums are A125905(n). - Philippe Deléham, Feb 22 2012
Diagonal sums are (-5)^n. - Philippe Deléham, Feb 22 2012
Subtriangle of triangle given by (0, -5, 1/5, -1/5, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 22 2012
Inverse of triangle in A125906. - Philippe Deléham, Feb 22 2012

Examples

			Triangle starts:
      1;
     -5,      1;
     24,    -10,     1;
   -115,     73,   -15,     1;
    551,   -470,   147,   -20,   1;
  -2640,   2828, -1190,   246, -25,   1;
  12649, -16310,  8631, -2400, 370, -30, 1;
  ...
Triangle (0, -5, 1/5, -1/5, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,     1;
  0,    -5,    1;
  0,    24,  -10,     1:
  0,  -115,   73,   -15,   1;
  0,   551, -470,   147, -20,   1;
  0, -2640, 2828, -1190, 246, -25, 1;
  ...
		

Crossrefs

Cf. Chebyshev's S(n,x+k) polynomials : A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k=2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=j then 5 elif abs(i-j)=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] - 5 T[n-1, k] - T[n-2, k]; T[0, 0] = 1; T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
  • Sage
    @CachedFunction
    def A123967(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A123967(n-1,k-1)-A123967(n-2,k)-5*A123967(n-1,k)
    for n in (0..9): [A123967(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,0) = (-1)^n*A004254(n+1).
G.f.: 1/(1+5*x+x^2 - y*x). - Philippe Deléham, Feb 22 2012
T(n,k) = T(n-1,k-1) - 5*T(n-1,k) - T(n-2,k), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 22 2014

Extensions

Edited by N. J. A. Sloane, Dec 03 2006

A125662 A convolution triangle of numbers based on A001906 (even-indexed Fibonacci numbers).

Original entry on oeis.org

1, 3, 1, 8, 6, 1, 21, 25, 9, 1, 55, 90, 51, 12, 1, 144, 300, 234, 86, 15, 1, 377, 954, 951, 480, 130, 18, 1, 987, 2939, 3573, 2305, 855, 183, 21, 1, 2584, 8850, 12707, 10008, 4740, 1386, 245, 24, 1, 6765, 26195, 43398, 40426, 23373, 8715, 2100, 316, 27, 1
Offset: 0

Author

Philippe Deléham, Jan 28 2007

Keywords

Comments

Subtriangle of the triangle given by [0,3,-1/3,1/3,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Unsigned version of A123965.
From Philippe Deléham, Feb 19 2012: (Start)
Riordan array (1/(1-3*x+x^2), x/(1-3*x+x^2)).
Equals A078812*A007318 as infinite lower triangular matrices.
Triangle of coefficients of Chebyshev's S(n,x+3) polynomials (exponents of x in increasing order). (End)
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3} containing k-1 letters equal 3 and avoiding 01. - Milan Janjic, Dec 20 2016

Examples

			Triangle begins:
   1;
   3,  1;
   8,  6,  1;
  21, 25,  9,  1;
  55, 90, 51, 12,  1;
  ...
Triangle [0,3,-1/3,1/3,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins:
  1;
  0,  1;
  0,  3,  1;
  0,  8,  6,  1;
  0, 21, 25,  9,  1;
  0, 55, 90, 51, 12,  1;
  ...
		

Crossrefs

Diagonal sums: A000244(powers of 3).
Row sums: A001353 (n+1).
Diagonals: A001906(n+1), A001871.
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A125662:= func< n,k | Abs( Coefficient(R!( Evaluate(ChebyshevU(n+1), (3-x)/2) ), k) ) >;
    [A125662(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
    
  • Mathematica
    With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 3 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
    Table[Abs[CoefficientList[ChebyshevU[n,(x-3)/2], x]], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
  • SageMath
    def A125662(n,k): return abs( ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k] )
    flatten([[A125662(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023

Formula

T(n,k) = T(n-1,k-1) + 3*T(n-1,k) - T(n-2,k); T(0,0)=1; T(n,k)=0 if k < 0 or k > n.
Sum_{k=0..n} T(n, k) = A001353(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000244(n+1).
G.f.: 1/(1-3*x+x^2-y*x). - Philippe Deléham, Feb 19 2012
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = abs( [x^k]( ChebyshevU(n, (3-x)/2) ) ).
Sum_{k=0..n} (-1)^k*T(n, k) = A000027(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000225(n). (End)

Extensions

a(45) corrected and a(51) added by Philippe Deléham, Feb 19 2012

A207823 Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
Offset: 0

Author

Philippe Deléham, Feb 20 2012

Keywords

Comments

Riordan array (1/(1-4*x+x^2), x/(1-4*x+x^2)).
Subtriangle of the triangle given by (0, 4, -1/4, 1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Unsigned version of triangles in A124029 and in A159764.
For 1<=k<=n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3,4} containing k-1 letters equal 4 and avoiding 01. - Milan Janjic, Dec 20 2016

Examples

			Triangle begins:
  1
  4, 1
  15, 8, 1
  56, 46, 12, 1
  209, 232, 93, 16, 1
  780, 1091, 592, 156, 20, 1
  2911, 4912, 3366, 1200, 235, 24, 1
  10864, 21468, 17784, 8010, 2120, 330, 28, 1
  40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1
  151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
  ...
Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 4, 1
  0, 15, 8, 1
  0, 56, 46, 12, 1
  0, 209, 232, 93, 16, 1
  ...
		

Crossrefs

Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Programs

  • Mathematica
    With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Recurrence: T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k).
Diagonal sums are 4^n = A000302(n).
Row sums are A004254(n+1).
G.f.: 1/(1-4*x+x^2-y*x)
T(n,n) = 1, T(n+1,n) = 4*n+4 = A008586(n+1), T(n+2,n) = (n+1)*(8n+15) = A139278(n+1).
T(n,0) = A001353(n+1).

Extensions

Offset changed to 0 by Georg Fischer, Feb 18 2020

A208513 Triangle of coefficients of polynomials u(n,x) jointly generated with A111125; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 6, 1, 1, 16, 20, 8, 1, 1, 25, 50, 35, 10, 1, 1, 36, 105, 112, 54, 12, 1, 1, 49, 196, 294, 210, 77, 14, 1, 1, 64, 336, 672, 660, 352, 104, 16, 1, 1, 81, 540, 1386, 1782, 1287, 546, 135, 18, 1, 1, 100, 825, 2640, 4290, 4004, 2275, 800, 170, 20, 1
Offset: 1

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

The columns of A208513 are identical to those of A208509. Here, however, the alternating row sums are periodic (with period 1,0,-2,-3,-2,0).
From Tom Copeland, Nov 07 2015: (Start)
These polynomials may be expressed in terms of the Faber polynomials of A263916, similar to A127677.
Rephrasing notes in A111125: Append an initial column of zeros except for a 1 at the top to A111125. Then the rows of this entry contain the partial sums of the column sequences of modified A111125; therefore, the difference of consecutive pairs of rows of this entry, modified by appending an initial row of zeros to it, generates the modified A111125. (End)

Examples

			First five rows:
  1;
  1,  1;
  1,  4,  1;
  1,  9,  6, 1;
  1, 16, 20, 8, 1;
First five polynomials u(n,x):
  u(1,x) = 1;
  u(2,x) = 1 +    x;
  u(3,x) = 1 +  4*x +    x^2;
  u(4,x) = 1 +  9*x +  6*x^2 +   x^3;
  u(5,x) = 1 + 16*x + 20*x^2 + 8*x^3 + x^4;
		

Programs

  • Magma
    A208513:= func< n,k | k eq 1 select 1 else (2*(n-1)/(n+k-2))*Binomial(n+k-2, 2*k-2) >;
    [A208513(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 02 2022
    
  • Mathematica
    (* First program *)
    u[1, x_]:=1; v[1, x_]:=1; z=16;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n,z}];
    TableForm[cu]
    Flatten[%]  (* A208513 *)
    Table[Expand[v[n, x]], {n,z}]
    cv = Table[CoefficientList[v[n, x], x], {n,z}];
    TableForm[cv]
    Flatten[%]  (* A111125 *)
    (* Second program *)
    T[n_, k_]:= If[k==1, 1, ((n-1)/(k-1))*Binomial[n+k-3, 2*k-3]];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 02 2022 *)
  • Sage
    def A208513(n,k): return 1 if (k==1) else ((n-1)/(k-1))*binomial(n+k-3, 2*k-3)
    flatten([[A208513(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 02 2022

Formula

Coefficients of u(n, x) from the mixed recurrence relations:
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x) = 1, u(2,x) = 1+x, v(1,x) = 1, v(2,x) = 3+x.
From Peter Bala, May 01 2012: (Start)
Working with an offset of 0: T(n,0) = 1; T(n,k) = (n/k)*binomial(n+k-1,2*k-1) = (n/k)*A078812(n,k) for k > 0. Cf. A156308.
O.g.f.: ((1-t)^2 + t^2*x)/((1-t)*((1-t)^2-t*x)) = 1 + (1+x)*t + (1+4*x+x^2)*t^2 + ....
u(n+1,x) = -1 + (b(2*n,x) + 1)/b(n,x), where b(n,x) = Sum_{k = 0..n} binomial(n+k, 2*k)*x^k are the Morgan-Voyce polynomials of A085478.
This triangle is formed from the even numbered rows of A211956 with a factor of 2^(k-1) removed from the k-th column entries.
(End)
T(n, k) = (2*(n-1)/(n+k-2))*binomial(n+k-2, 2*k-2). - G. C. Greubel, Feb 02 2022

A172431 Even row Pascal-square read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 20, 5, 1, 10, 36, 56, 35, 6, 1, 12, 55, 120, 126, 56, 7, 1, 14, 78, 220, 330, 252, 84, 8, 1, 16, 105, 364, 715, 792, 462, 120, 9, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10
Offset: 1

Author

Mark Dols, Feb 02 2010

Keywords

Comments

Apart from signs identical to A053123. Mirror of A078812.
As a triangle, row n consists of the coefficients of Morgan-Voyce polynomial B(n,x); e.g., B(3,x)=x^3+6x^2+10x+4. As a triangle, rows 0 to 4 are as follows: 1 1...2 1...4...3 1...6...10...4 1...8...21...20...5 See A054142 for coefficients of Morgan-Voyce polynomial b(n,x).
Scaled version of A119900. - Philippe Deléham, Feb 24 2012
A172431 is jointly generated with A054142 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1,x) and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012

Examples

			Array begins:
  1,  2,  3,  4,  5,  6, ...
  1,  4, 10, 20, 35, ...
  1,  6, 21, 56, ...
  1,  8, 36, ...
  1, 10, ...
  1, ...
  ...
Example:
Starting with 1, every entry is twice the one to the left minus the second one to the left, plus the one above.
For n = 9 the a(9) = 10 solution is 2*4 - 1 + 3.
From _Philippe Deléham_, Feb 24 2012: (Start)
Triangle T(n,k) begins:
  1;
  1,   2;
  1,   4,   3;
  1,   6,  10,   4;
  1,   8,  21,  20,   5;
  1,  10,  36,  56,  35,   6;
  1,  12,  55, 120, 126,  56,   7; (End)
From _Philippe Deléham_, Mar 22 2012: (Start)
(1, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, ...) begins:
  1;
  1,   0;
  1,   2,   0;
  1,   4,   3,   0;
  1,   6,  10,   4,   0;
  1,   8,  21,  20,   5,   0;
  1,  10,  36,  56,  35,   6,   0;
  1,  12,  55, 120, 126,  56,   7,   0; (End)
		

Crossrefs

Cf. A078812, A053123, A007318, A001906 (antidiagonals sums), A007685.
Cf. also A054142, A082985.

Programs

  • GAP
    F:=Factorial;; Flat(List([1..15], n-> List([1..n], k-> Sum([0..Int((k-1)/2)], j-> (-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)) )))); # G. C. Greubel, Dec 15 2019
  • Magma
    F:=Factorial; [ &+[(-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)): j in [0..Floor((k-1)/2)]]: k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 15 2019
    
  • Maple
    T := (n, k) -> simplify(GegenbauerC(k, n-k, 1)):
    for n from 0 to 10 do seq(T(n,k), k=0..n-1) od; # Peter Luschny, May 10 2016
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A054142 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A172431 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Table[GegenbauerC[k-1, n-k+1, 1], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 15 2019 *)
  • PARI
    T(n,k) = sum(j=0, (k-1)\2, (-1)^j*(n-j-1)!*2^(k-2*j-1)/(j!*(n-k)!*(k-2*j-1)!) );
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2019
    
  • Sage
    [[gegenbauer(k-1, n-k+1, 1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 15 2019
    

Formula

As a decimal sequence: a(n)= 12*a(n-1)- a(n-2) with a(1)=1. [I interpret this remark as: 1, 12=1,2, 143=1,4,3, 1704=1,6,10,4,... taken from A004191 are decimals on the diagonal. - R. J. Mathar, Sep 08 2013]
As triangle T(n,k): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
As DELTA-triangle T(n,k) with 0<=k<=n: G.f.: (1-y*x)^2/((1-y*x)^2-x). - Philippe Deléham, Mar 22 2012
T(n, k) = GegenbauerC(k, n-k, 1). - Peter Luschny, May 10 2016
As triangle T(n,k): Product_{k=1..n} T(n,k) = Product_{k=0..n-1} binomial(2*k,k) = A007685(n-1) for n >= 1. - Werner Schulte, Apr 26 2017
As triangle T(n,k) with 1 <= k <= n: T(n,k) = binomial(2*n-k, k-1). - Paul Weisenhorn, Nov 25 2019

A207815 Triangle of coefficients of Chebyshev's S(n,x-3) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, -3, 1, 8, -6, 1, -21, 25, -9, 1, 55, -90, 51, -12, 1, -144, 300, -234, 86, -15, 1, 377, -954, 951, -480, 130, -18, 1, -987, 2939, -3573, 2305, -855, 183, -21, 1, 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1, -6765, 26195, -43398, 40426, -23373, 8715
Offset: 0

Author

Philippe Deléham, Feb 20 2012

Keywords

Comments

Riordan array (1/(1+3*x+x^2), x/(1+3*x+x^2)).
Subtriangle of the triangle given by (0, -3, 1/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonal sums are (-3)^n.
Inverse array is A091965.

Examples

			Triangle begins:
      1;
     -3,     1;
      8,    -6,      1;
    -21,    25,     -9,      1;
     55,   -90,     51,    -12,      1;
   -144,   300,   -234,     86,    -15,     1;
    377,  -954,    951,   -480,    130,   -18,     1;
   -987,  2939,  -3573,   2305,   -855,   183,   -21,   1;
   2584, -8850,  12707, -10008,   4740, -1386,   245, -24,   1;
  -6765, 26195, -43398,  40426, -23373,  8715, -2100, 316, -27, 1;
Triangle (0, -3, 1/3, -1/3, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,    1;
  0,   -3,   1;
  0,    8,  -6,    1;
  0,  -21,  25,   -9,   1;
  0,   55, -90,   51, -12,   1;
  0, -144, 300, -234,  86, -15, 1;
  ...
		

Crossrefs

Cf. Chebyshev's S(n,x+k) polynomials: A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Programs

  • Mathematica
    T[?Negative, ] = 0; T[0, 0] = 1; T[0, ] = 0; T[n, n_] = 1; T[n_, k_] := T[n, k] = T[n - 1, k - 1] - T[n - 2, k] - 3 T[n - 1, k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 22 2018 *)
  • PARI
    row(n) = Vecrev(subst(polchebyshev(n,2,x/2), x, x-3))
    tabf(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Jun 22 2018
  • Sage
    @CachedFunction
    def A207815(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A207815(n-1,k-1)-A207815(n-2,k)-3*A207815(n-1,k)
    for n in (0..9): [A207815(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(n,k) = (-1)^(n-k)*A125662(n,k).
Recurrence: T(n,k) = (-3)*T(n-1,k) + T(n-1,k-1) - T(n-2,k).
G.f.: 1/(1+3*x+x^2-y*x).

Extensions

T(8,0) corrected by Jean-François Alcover, Jun 22 2018
Previous Showing 21-30 of 43 results. Next