cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 143 results. Next

A119347 Number of distinct sums of distinct divisors of n. Here 0 (as the sum of an empty subset) is excluded from the count.

Original entry on oeis.org

1, 3, 3, 7, 3, 12, 3, 15, 7, 15, 3, 28, 3, 15, 15, 31, 3, 39, 3, 42, 15, 15, 3, 60, 7, 15, 15, 56, 3, 72, 3, 63, 15, 15, 15, 91, 3, 15, 15, 90, 3, 96, 3, 63, 55, 15, 3, 124, 7, 63, 15, 63, 3, 120, 15, 120, 15, 15, 3, 168, 3, 15, 59, 127, 15, 144, 3, 63, 15, 142, 3, 195, 3, 15, 63, 63
Offset: 1

Views

Author

Emeric Deutsch, May 15 2006

Keywords

Comments

If a(n)=sigma(n) (=sum of the divisors of n =A000203(n); i.e. all numbers from 1 to sigma(n) are sums of distinct divisors of n), then n is called a practical number (A005153). The actual sums obtained from the divisors of n are given in row n of the triangle A119348.
The records appear to occur at the highly abundant numbers, A002093, excluding 3 and 10. For n in A174533, a(n) = sigma(n)-2. - T. D. Noe, Mar 29 2010
The indices of records occur at the highly abundant numbers, excluding 3 and 10, if Jaycob Coleman's conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - Amiram Eldar, Jun 13 2020
Zumkeller numbers A083207 give the positions of even terms in this sequence (likewise, the positions of odd terms in A308605). - Antti Karttunen and Ilya Gutkovskiy, Nov 29 2024

Examples

			a(5)=3 because the divisors of 5 are 1 and 5 and all the possible sums: are 1,5 and 6; a(6)=12 because we can form all sums 1,2,...,12 by adding up the terms of a nonempty subset of the divisors 1,2,3,6 of 6.
		

Crossrefs

One less than A308605.
Cf. A083207 (positions of even terms).

Programs

  • Haskell
    import Data.List (subsequences, nub)
    a119347 = length . nub . map sum . tail . subsequences . a027750_row'
    -- Reinhard Zumkeller, Jun 27 2015
    
  • Maple
    with(numtheory): with(linalg): a:=proc(n) local dl,t: dl:=convert(divisors(n),list): t:=tau(n): nops({seq(innerprod(dl,convert(2^t+i,base,2)[1..t]),i=1..2^t-1)}) end: seq(a(n),n=1..90);
  • Mathematica
    a[n_] := Total /@ Rest[Subsets[Divisors[n]]] // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Jan 27 2018 *)
  • PARI
    A119347(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); sum(i=1,poldegree(p),(0Antti Karttunen, Nov 28 2024
    
  • PARI
    A119347(n) = { my(c=[0]); fordiv(n, d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c)-1; }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
  • Python
    from sympy import divisors
    def A119347(n):
        c = {0}
        for d in divisors(n,generator=True):
            c |=  {a+d for a in c}
        return len(c)-1 # Chai Wah Wu, Jul 05 2023
    

Formula

For n > 1, 3 <= a(n) <= sigma(n). - Charles R Greathouse IV, Feb 11 2019
For p prime, a(p) = 3. For k >= 0, a(2^k) = 2^(k + 1) - 1. - Ctibor O. Zizka, Oct 19 2023
From Antti Karttunen, Nov 29 2024: (Start)
a(n) = A308605(n)-1.
a(n) = 2*(A237290(n)/A000203(n)) - 1. [Found by Sequence Machine. See A237290.]
a(n) <= A100587(n).
(End)

Extensions

Definition clarified by Antti Karttunen, Nov 29 2024

A103977 Zumkeller deficiency of n: Let d_1 ... d_k be the divisors of n. Then a(n) = min_{ e_1 = +-1, ... e_k = +-1 } | Sum_i e_i d_i |.

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, 0, 12, 4, 6, 1, 16, 1, 18, 0, 10, 8, 22, 0, 19, 10, 14, 0, 28, 0, 30, 1, 18, 14, 22, 1, 36, 16, 22, 0, 40, 0, 42, 4, 12, 20, 46, 0, 41, 7, 30, 6, 52, 0, 38, 0, 34, 26, 58, 0, 60, 28, 22, 1, 46, 0, 66, 10, 42, 0, 70, 1, 72, 34, 26, 12, 58, 0, 78, 0
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jan 01 2007

Keywords

Comments

Like the ordinary deficiency (A033879) obtains 0's only at perfect numbers (A000396), the Zumkeller deficiency obtains 0's only at integer-perfect numbers, A083207. See the formula section. Unlike the ordinary deficiency, this obtains only nonnegative values. See A378600 for another version. - Antti Karttunen, Dec 03 2024

Examples

			a(6) = 1 + 2 + 3 - 6 = 0.
		

Crossrefs

Cf. A125732, A125733, A005835, A023196, A033879, A083206, A083207 (positions of 0's), A263837, A378643 (Dirichlet inverse), A378644 (Möbius transform), A378645, A378646, A378647 (an analog of A000027), A378648 (an analog of sigma), A378649 (an analog of Euler phi), A379503 (positions of 1's), A379504, A379505.
Cf. A378600 (signed variant).
Cf. also A058377, A119347.

Programs

  • Maple
    A103977 := proc(n) local divs,a,acandid,filt,i,p,sigs ; divs := convert(numtheory[divisors](n),list) ; a := add(i,i=divs) ; for sigs from 0 to 2^nops(divs)-1 do filt := convert(sigs,base,2) ; while nops(filt) < nops(divs) do filt := [op(filt), 0] ; od ; acandid := 0 ; for p from 0 to nops(divs)-1 do if op(p+1,filt) = 0 then acandid := acandid-op(p+1,divs) ; else acandid := acandid+op(p+1,divs) ; fi ; od: acandid := abs(acandid) ; if acandid < a then a := acandid ; fi ; od: RETURN(a) ; end: seq(A103977(n),n=1..80) ; # R. J. Mathar, Nov 27 2007
    # second Maple program:
    a:= proc(n) option remember; local l, b; l, b:= [numtheory[divisors](n)[]],
          proc(s, i) option remember; `if`(i<1, s,
            min(b(s+l[i], i-1), b(abs(s-l[i]), i-1)))
          end: b(0, nops(l))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Dec 05 2024
  • Mathematica
    a[n_] := Module[{d = Divisors[n], c, p, m}, c = CoefficientList[Product[1 + x^i, {i, d}], x]; p = -1 + Position[c, ?(# > 0 &)] // Flatten; m = Length[p]; If[OddQ[m], If[(d = p[[(m + 1)/2]] - p[[(m - 1)/2]]) == 1, 0, d], p[[m/2 + 1]] - p[[m/2]]]]; Array[a, 100] (* _Amiram Eldar, Dec 11 2019 *)
  • PARI
    nonzerocoefpositions(p) = { my(v=Vec(p), lista=List([])); for(i=1,#v,if(v[i], listput(lista,i))); Vec(lista); }; \\ Doesn't need to be 0-based, as we use their differences only.
    A103977(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); my(plist=nonzerocoefpositions(p), m = #plist, d); if(!(m%2), plist[1+(m/2)]-plist[m/2], d = plist[(m+1)/2]-plist[(m-1)/2]; if(1==d,0,d)); }; \\ Antti Karttunen, Dec 03 2024, after Mathematica-program by Amiram Eldar

Formula

If n=p (prime), then a(n)=p-1. If n=2^m, then a(n)=1. [Corrected by R. J. Mathar, Nov 27 2007]
a(n) = 0 iff n is a Zumkeller number (A083207). - Amiram Eldar, Jan 05 2020
From Antti Karttunen, Dec 03 2024: (Start)
a(n) = A033879(n) iff n is a non-abundant number (A263837).
a(n) = abs(A378600(n)).
a(n) = 2*A378647(n) - A378648(n). [Analogously to A033879(n) = 2*n - sigma(n)]
a(n) = 0 <=> A083206(n) > 0.
(End)
a(p^e) = p^e - (1+p+...+p^(e-1)) = (p^e*(p-2) + 1)/(p-1) for prime p. - Jianing Song, Dec 05 2024
a(n) = 1 <=> A379504(n) > 0. - Antti Karttunen, Jan 07 2025

Extensions

More terms from R. J. Mathar, Nov 27 2007
Name "Zumkeller deficiency" coined by Antti Karttunen, Dec 03 2024

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A083209 Numbers whose divisors can be partitioned in exactly one way into two disjoint sets with the same sum.

Original entry on oeis.org

6, 12, 20, 28, 56, 70, 88, 104, 176, 208, 272, 304, 368, 464, 496, 550, 650, 736, 836, 928, 992, 1184, 1312, 1376, 1504, 1696, 1888, 1952, 2752, 3008, 3230, 3392, 3770, 3776, 3904, 4030, 4288, 4510, 4544, 4672, 5056, 5170, 5312, 5696, 5830, 6208, 6464
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

A083206(a(n))=1; perfect numbers (A000396) are a subset; problem: are weird numbers (A006037) a subset?
The weird numbers A006037 are not a subset of this sequence. The first missing weird number is A006037(8) = 10430. - Alois P. Heinz, Oct 29 2009
All numbers of the form p*2^k are in this sequence for k>0 and odd primes p between 2^(k+1)/3 and 2^(k+1). - T. D. Noe, Jul 08 2010
"Numbers with exactly one subset of their sets of divisors such that the complement has the same sum." - This was the original name of the sequence, but strictly taken is incorrect, because there are always two subsets that satisfy this condition: the subset and its complement. - Antti Karttunen, Dec 02 2024

Examples

			n=20: 2+4+5+10 = 1+20, 20 is a term (A083206(20)=1).
		

Crossrefs

Subsequence of A083207, Zumkeller numbers.
Positions of 1's in A083206.
Cf. A005101, A005835, A064771, A337739 (terms with record number of divisors), A378449 (characteristic function), A378530 (subsequence).
Cf. also A378652, and A335143, A335199, A335202, A335219, A335217, A339980 for variants.

Programs

  • Maple
    with(numtheory): b:= proc(n,l) option remember; local m, ll, i; m:= nops(l); if n<0 then 0 elif n=0 then 1 elif m=0 or add(i, i=l)Alois P. Heinz, Oct 29 2009
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{m, ll, i}, m = Length[l]; Which[n<0, 0, n == 0, 1, m == 0 || Total[l] Nothing]; b[n, ll] + b[n - l[[m]], ll]]]; a[n_] := a[n] = Module[{i, k, l, m, r}, For[k = If[n == 1, 1, a[n-1]+1], True, k++, l = Divisors[k]; {m, r} = QuotientRemainder[Total[l], 2]; If[r==0 && b[m, l]==2, Break[]]]; k]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 31 2017, after Alois P. Heinz *)
  • PARI
    isA083209 = A378449; \\ Antti Karttunen, Nov 28 2024

Extensions

More terms from Alois P. Heinz, Oct 29 2009
Improved the definition, old name moved to the comments - Antti Karttunen, Dec 02 2024

A171641 Non-deficient numbers with even sigma which are not Zumkeller.

Original entry on oeis.org

738, 748, 774, 846, 954, 1062, 1098, 1206, 1278, 1314, 1422, 1494, 1602, 1746, 1818, 1854, 1926, 1962, 2034, 2286, 2358, 2466, 2502, 2682, 2718, 2826, 2934, 3006, 3114, 3222, 3258, 3438, 3474, 3492, 3546, 3582, 3636, 3708, 3798, 3852, 3924, 4014, 4068, 4086
Offset: 1

Views

Author

Peter Luschny, Dec 14 2009

Keywords

Comments

Numbers which are non-deficient (sigma(n) >= 2n) [A023196] such that sigma(n) [A000203] is even but which are not Zumkeller numbers [A083207], i.e., the positive factors of n cannot be partitioned into two disjoint parts so that the sums of the two parts are equal.

Crossrefs

Setwise difference A083211 \ A156903.
Positions of even negative terms in A378600.

Programs

  • Maple
    with(NumberTheory):
    isA171641 := proc(n) local s, p, i, P;
        s := SumOfDivisors(n);
        if s::odd or s < n*2 then false else
        P := mul(1 + x^i, i in Divisors(n));
        0 = coeff(P, x, s/2) fi end:
    select(isA171641, [seq(1..4100)]);  # Peter Luschny, Oct 19 2024
  • Mathematica
    Reap[For[n = 2, n <= 4000, n = n+2, sigma = DivisorSigma[1, n]; If[sigma >= 2n && EvenQ[sigma] && Coefficient[ Times @@ (1 + x^Divisors[n]) // Expand, x, sigma/2] == 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 26 2013 *)
  • Python
    from sympy import divisors
    import numpy as np
    A171641 = []
    for n in range(2,10**6):
        d = divisors(n)
        s = sum(d)
        if not s % 2 and 2*n <= s:
            d.remove(n)
            s2, ld = int(s/2-n), len(d)
            z = np.zeros((ld+1,s2+1),dtype=int)
            for i in range(1,ld+1):
                y = min(d[i-1],s2+1)
                z[i,range(y)] = z[i-1,range(y)]
                z[i,range(y,s2+1)] = np.maximum(z[i-1,range(y,s2+1)],z[i-1,range(0,s2+1-y)]+y)
            if z[ld,s2] != s2:
                A171641.append(n)
    # Chai Wah Wu, Aug 19 2014

A290466 Unitary Zumkeller numbers: numbers k whose unitary divisors can be partitioned into two disjoint subsets whose sums are both usigma(k)/2.

Original entry on oeis.org

6, 30, 42, 60, 66, 70, 78, 90, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834, 840, 858, 870, 894, 906
Offset: 1

Views

Author

Ivan N. Ianakiev, Aug 03 2017

Keywords

Comments

Seemingly, a supersequence of A002827 (unitary perfect numbers) and a subsequence of A083207 (Zumkeller numbers).

Examples

			The set of unitary divisors of 30 is {1,2,3,5,6,10,15,30}. It can be partitioned into two disjoint subsets with equal sums of elements: {5,6,10,15} and {1,2,3,30}, therefore 30 is in the sequence.
		

Crossrefs

Cf. A002827, A034448 (sum of unitary divisors of n), A083207, A290467.

Programs

  • Mathematica
    uDiv[n_]:=Block[{d=Divisors[n]},Select[d,GCD[#,n/#]==1&]];uZNQ[n_]:=Module[{d=uDiv[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]];Select[Range[10^3],uZNQ] (* combined from the code by Robert G. Wilson v at A034448 and T. D. Noe at A083207 *)

A036913 Sparsely totient numbers; numbers n such that m > n implies phi(m) > phi(n).

Original entry on oeis.org

2, 6, 12, 18, 30, 42, 60, 66, 90, 120, 126, 150, 210, 240, 270, 330, 420, 462, 510, 630, 660, 690, 840, 870, 1050, 1260, 1320, 1470, 1680, 1890, 2310, 2730, 2940, 3150, 3570, 3990, 4620, 4830, 5460, 5610, 5670, 6090, 6930, 7140, 7350, 8190, 9240, 9660
Offset: 1

Views

Author

Keywords

Comments

The paper by Masser and Shiu lists 150 terms of this sequence less than 10^6. For odd prime p, they show that p# and p*p# are in this sequence, where p# denotes the primorial (A002110). - T. D. Noe, Jun 14 2006
Conjecture: Except for 2 and 18, all terms are Zumkeller numbers (A083207). Verified for the first 1800 terms. - Ivan N. Ianakiev, Sep 04 2022

Examples

			This sequence contains 60 because of all the numbers whose totient is <=16, 60 is the largest such number. [From _Graeme McRae_, Feb 12 2009]
From _Michael De Vlieger_, Jun 25 2017: (Start)
Positions of primorials A002110(k) in a(n):
     n     k       a(n) = A002110(k)
  ----------------------------------
     1     1                       2
     2     2                       6
     5     3                      30
    13     4                     210
    31     5                    2310
    69     6                   30030
   136     7                  510510
   231     8                 9699690
   374     9               223092870
   578    10              6469693230
   836    11            200560490130
  1169    12           7420738134810
  1591    13         304250263527210
  2149    14       13082761331670030
  2831    15      614889782588491410
  3667    16    32589158477190044730
  4661    17  1922760350154212639070
(End)
		

Crossrefs

Cf. A097942 (highly totient numbers). Records in A006511 (see also A132154).

Programs

  • Mathematica
    nn=10000; lastN=Table[0,{nn}]; Do[e=EulerPhi[n]; If[e<=nn, lastN[[e]]=n], {n,10nn}]; mx=0; lst={}; Do[If[lastN[[i]]>mx, mx=lastN[[i]]; AppendTo[lst,mx]], {i,Length[lastN]}]; lst (* T. D. Noe, Jun 14 2006 *)

A180332 Primitive Zumkeller numbers.

Original entry on oeis.org

6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550, 572, 650, 836, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4030, 4070, 4095, 4216
Offset: 1

Views

Author

T. D. Noe, Sep 07 2010

Keywords

Comments

A number is called a primitive Zumkeller number if it is a Zumkeller number (A083207) but none of its proper divisors are Zumkeller numbers. These numbers are very similar to primitive non-deficient numbers (A006039), but neither is a subsequence of the other. [See A378538, A378656, A378657].
Because every Zumkeller number has a divisor that is a primitive Zumkeller number, every Zumkeller number z can be factored as z = d*r, where d is the smallest divisor of z that is a primitive Zumkeller number.
Every number of the form p*2^k is a primitive Zumkeller number, where p is an odd prime and k = floor(log_2(p)).
The odd terms are not the same as A006038. For example, 342225 occurs there, but not here, while 4448925 occurs here, but is not in A006038. - Antti Karttunen, Dec 05 2024

Crossrefs

Cf. A000396 (subsequence), A006038, A083207, A006039, A378537 (characteristic function), A378538, A378656, A378657.

Programs

  • Mathematica
    ZumkellerQ[n_] := ZumkellerQ[n] = Module[{d = Divisors[n], ds, x}, ds = Total[d]; If[OddQ[ds], False, SeriesCoefficient[Product[1 + x^i, {i, d}], {x, 0, ds/2}] > 0]];
    Reap[For[n = 1, n <= 5000, n++, If[ZumkellerQ[n] && NoneTrue[Most[Divisors[ n]], ZumkellerQ], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 01 2019 *)
  • Python
    from sympy import divisors
    from sympy.utilities.iterables import subsets
    def isz(n): # after Peter Luschny in A083207
        divs = divisors(n)
        s = sum(divs)
        if not (s%2 == 0 and 2*n <= s): return False
        S = s//2 - n
        R = [m for m in divs if m <= S]
        return any(sum(c) == S for c in subsets(R))
    def ok(n): return isz(n) and not any(isz(d) for d in divisors(n)[:-1])
    print(list(filter(ok, range(1, 5000)))) # Michael S. Branicky, Jun 20 2021
    
  • SageMath
    # uses[is_Zumkeller from A083207]
    def is_primitiveZumkeller(n):
        return (is_Zumkeller(n) and
            not any(is_Zumkeller(d) for d in divisors(n)[:-1]))
    print([n for n in (1..4216) if is_primitiveZumkeller(n)]) # Peter Luschny, Jun 21 2021

A118372 S-perfect numbers.

Original entry on oeis.org

6, 24, 28, 96, 126, 224, 384, 496, 1536, 1792, 6144, 8128, 14336, 15872, 24576, 98304, 114688, 393216, 507904, 917504, 1040384, 1572864, 5540590, 6291456, 7340032, 9078520, 16252928, 22528935, 25165824, 33550336, 56918394, 58720256, 100663296, 133169152
Offset: 1

Views

Author

Vladeta Jovovic, May 15 2006

Keywords

Comments

In base 12 the sequence becomes 6, 20, 24, 80, X6, 168, 280, 354, X80, 1054, 3680, 4854, 8368, 9228, 12280, 48X80, 56454, where X is 10 and E is 11. The perfect numbers (A000396) in this sequence in base 12 are 6, 24, 354, 4854. - Walter Kehowski, May 20 2006
Subsequence of A083207. - Reinhard Zumkeller, Oct 28 2010
Conjecture: If k is an S-perfect number, then A000203(k)/2 is a Zumkeller number (A083207). - Ivan N. Ianakiev, Apr 23 2017
Called "Granville numbers" by De Koninck (2009), after Andrew Granville, who proposed the problem of calculating these numbers in December 1996. - Amiram Eldar, Aug 11 2023

Examples

			2 is in S since s = Sum_{d|2, d<2 and d in S} d = 1 and 1 <= 2. Similarly, 3, 4, 5, 6 are in S with 6 as the first element such that s = n, that is, 6 is the first S-perfect number. - _Walter Kehowski_, May 20 2006
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009.

Crossrefs

Subsequence of A023196 and A083207.
A000396 is a subsequence.

Programs

  • C
    #include  #include  #define MAX_SIZE_SSET 1000000 int main(int argc, char*argv[]) { int Sset[MAX_SIZE_SSET] ; int Ssetsize= 1; Sset[0]=1 ; for(int n=2; n < MAX_SIZE_SSET; n++) { int dsum=0 ; for(int i=0; i< Ssetsize; i++) { if( n % Sset[i] ==0 && Sset[i] < n) dsum += Sset[i] ; if (dsum > n || Sset[i] >=n) break ; } if( dsum <= n) { if(dsum==n) printf("%d\n",n) ; Sset[Ssetsize++ ]= n ; } } } /* R. J. Mathar, Oct 28 2010 */
    
  • Haskell
    a118372_list = sPerfect 1 [] where
       sPerfect x ss | v > x = sPerfect (x + 1) ss
                     | v < x = sPerfect (x + 1) (x : ss)
                     | otherwise = x : sPerfect (x + 1) (x : ss)
                     where v = sum (filter ((== 0) . mod x) ss)
    -- Reinhard Zumkeller, Oct 28 2010, Nov 02 2010, Feb 25 2012
    
  • Maple
    with(numtheory); S:={1}: SP:=[]: for w to 1 do for n from 1 to 2*10^5 do d:=select(proc(z) z in S and zWalter Kehowski, May 20 2006
  • Mathematica
    S = {1}; SP = {}; Do[ s = Total[ Intersection[S , Divisors[n]]]; If[s <= n, S = Union[S, {n}]]; If[s == n, Print[n]; AppendTo[SP, n]] , {n, 2, 2*10^5} ]; SP (* Jean-François Alcover, Dec 06 2011, after Walter Kehowski *)
  • Sage
    def S_perfect_list(search_limit):
        S = []; T = []
        for n in (1..search_limit):
            d = [t for t in divisors(n) if t in S and t < n]
            s = sum(d)
            if s <= n: S.append(n)
            if s == n: T.append(n)
        return T
    S_perfect_list(25555) # after Walter Kehowski, Peter Luschny, Sep 03 2018

Formula

S = {1}. Assume n>1 and that all numbers mWalter Kehowski, May 20 2006
I take the preceding comment to mean: S_0 = {1}. s_n = Sum_{d|n, d n, and S_{n-1} U {n} if s_n <= n. - Hugo van der Sanden, Oct 28 2010

Extensions

More terms from R. J. Mathar, May 17 2006, a(18) and a(19) Oct 28 2010
Two more terms added and C-program reduced by R. J. Mathar, Oct 28 2010
More terms from William Rex Marshall, Oct 28 2010

A211223 Numbers k for which sigma(k) = sigma(x) + sigma(y), where k = x + y.

Original entry on oeis.org

3, 8, 9, 10, 15, 20, 21, 30, 32, 33, 39, 40, 49, 51, 55, 56, 57, 62, 63, 69, 70, 75, 85, 87, 88, 90, 92, 93, 94, 96, 99, 104, 105, 108, 110, 111, 114, 116, 117, 123, 125, 126, 128, 129, 130, 134, 135, 136, 140, 141, 145, 147, 150, 152, 153, 155, 158, 159, 160
Offset: 1

Views

Author

Paolo P. Lava, Apr 27 2012

Keywords

Comments

A211225(a(n)) > 0. - Reinhard Zumkeller, Jan 06 2013

Examples

			sigma(49) = sigma(8) + sigma(41) that is 57 = 15 + 42.
sigma(93) = sigma(31) + sigma(62) that is 128 = 32 + 96.
In more than one way: sigma(117) = sigma(41) + sigma(76) = sigma(52) + sigma(65) = sigma(56) + sigma(61) that is 182 = 42 + 140 = 98 + 84 = 120 + 62.
		

Crossrefs

Programs

  • Haskell
    a211223 n = a211223_list !! (n-1)
    a211223_list = map (+ 1) $ findIndices (> 0) a211225_list
    -- Reinhard Zumkeller, Jan 06 2013
  • Maple
    with(numtheory);
    A211223:=proc(q)
    local i,n;
    for n from 1 to q do
      for i from 1 to trunc(n/2) do
        if sigma(i)+sigma(n-i)=sigma(n) then print(n); break; fi;
    od; od; end:
    A211223(10000);
  • Mathematica
    sigmaPartitionQ[n_] := With[{s = DivisorSigma[1, n], ip = IntegerPartitions[ n, {2}]}, MemberQ[ip, {x_, y_} /; s == DivisorSigma[ 1, x] + DivisorSigma[ 1, y]]]; Select[Range[160], sigmaPartitionQ] (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    is(n)=my(t=sigma(n));for(i=1,n\2,if(sigma(i)+sigma(n-i)==t, return(1))) \\ Charles R Greathouse IV, May 04 2012
    
Previous Showing 31-40 of 143 results. Next