cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A152734 5 times pentagonal numbers: 5*n*(3*n-1)/2.

Original entry on oeis.org

0, 5, 25, 60, 110, 175, 255, 350, 460, 585, 725, 880, 1050, 1235, 1435, 1650, 1880, 2125, 2385, 2660, 2950, 3255, 3575, 3910, 4260, 4625, 5005, 5400, 5810, 6235, 6675, 7130, 7600, 8085, 8585, 9100, 9630, 10175, 10735, 11310, 11900, 12505, 13125, 13760, 14410
Offset: 0

Views

Author

Omar E. Pol, Dec 11 2008

Keywords

Comments

a(n) can be represented as a figurate number using n concentric pentagons (see example). - Omar E. Pol, Aug 21 2011

Examples

			From _Omar E. Pol_, Aug 22 2011 (Start):
Illustration of initial terms as concentric pentagons (in a precise representation the pentagons should be strictly concentric):
.
.                                          o
.                                        o   o
.                                      o       o
.                o                   o     o     o
.              o   o               o     o   o     o
.            o       o           o     o       o     o
.  o       o     o     o       o     o     o     o     o
.o   o   o     o   o     o   o     o     o   o     o     o
. o o     o     o o     o     o     o     o o     o     o
.          o           o       o     o           o     o
.           o         o         o     o         o     o
.            o o o o o           o     o o o o o     o
.                                 o                 o
.                                  o               o
.                                   o o o o o o o o
.
.  5             25                        60
(End)
		

Crossrefs

Cf. sequences of the form n*(d*n+10-d)/2 indexed in A140090.

Programs

Formula

a(n) = 5*A000326(n).
a(n) = a(n-1)+15*n-10 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 5*x*(1+2*x)/(1-x)^3. a(n) = 4*A000217(n)+A051865(n). - Bruno Berselli, Feb 11 2011
E.g.f.: (5/2)*(3*x^2 + 2*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi- 6*log(2))/15. (End)

A228617 T(n,k) is the number of s in {1,...,n}^n having shortest run with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 24, 0, 3, 0, 240, 12, 0, 4, 0, 3080, 40, 0, 0, 5, 0, 46410, 210, 30, 0, 0, 6, 0, 822612, 840, 84, 0, 0, 0, 7, 0, 16771832, 5208, 112, 56, 0, 0, 0, 8, 0, 387395856, 23760, 720, 144, 0, 0, 0, 0, 9, 0, 9999848700, 148410, 2610, 180, 90, 0, 0, 0, 0, 10
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2013

Keywords

Comments

Sum_{k=0..n} k*T(n,k) = A228618(n).
Sum_{k=0..n} T(n,k) = A000312(n).
T(2*n,n) = A002939(n) for n>0.
T(2*n+1,n) = A033586(n) for n>1.
T(2*n+2,n) = A085250(n+1) for n>2.
T(2*n+3,n) = A033586(n+1) for n>3.

Examples

			T(3,1) = 24: [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [1,3,3], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [2,3,3], [3,1,1], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3], [3,3,1], [3,3,2].
T(3,3) =  3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
  1;
  0,        1;
  0,        2,    2;
  0,       24,    0,   3;
  0,      240,   12,   0,  4;
  0,     3080,   40,   0,  0,  5;
  0,    46410,  210,  30,  0,  0,  6;
  0,   822612,  840,  84,  0,  0,  0,  7;
  0, 16771832, 5208, 112, 56,  0,  0,  0,  8;
		

Crossrefs

Row sums give: A000312.
Main diagonal gives: A028310.

A139272 a(n) = n*(8*n-5).

Original entry on oeis.org

0, 3, 22, 57, 108, 175, 258, 357, 472, 603, 750, 913, 1092, 1287, 1498, 1725, 1968, 2227, 2502, 2793, 3100, 3423, 3762, 4117, 4488, 4875, 5278, 5697, 6132, 6583, 7050, 7533, 8032, 8547, 9078, 9625, 10188, 10767, 11362, 11973, 12600
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 3, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139276 in the same spiral.

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=16: see Comments lines of A226492.

Programs

Formula

a(n) = 8*n^2 - 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 13 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13*x + 3)/(1-x)^3.
E.g.f.: (8*x^2 + 3*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = ((sqrt(2)-1)*Pi + 8*log(2) - 2*sqrt(2)*log(sqrt(2)+1))/10. - Amiram Eldar, Mar 17 2022

A139274 a(n) = n*(8*n-1).

Original entry on oeis.org

0, 7, 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 2574, 2869, 3180, 3507, 3850, 4209, 4584, 4975, 5382, 5805, 6244, 6699, 7170, 7657, 8160, 8679, 9214, 9765, 10332, 10915, 11514, 12129, 12760, 13407, 14070, 14749
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the triangular numbers A000217.
Polygonal number connection: 2*P_n + 5*S_n where P_n is the n-th pentagonal number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010

Examples

			a(1) = 16*1 + 0 - 9 = 7; a(2) = 16*2 + 7 - 9 = 30; a(3) = 16*3 + 30 - 9 = 69. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = (1/3) * Sum_{i=n..(7*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(9*x+7)/(1-x)^3.
E.g.f.: (8*x^2 + 7*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + sqrt(2)*log(sqrt(2)+1) - (sqrt(2)+1)*Pi/2. - Amiram Eldar, Mar 18 2022

A194274 Concentric square numbers (see Comments lines for definition).

Original entry on oeis.org

0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, 72, 84, 97, 112, 128, 144, 161, 180, 200, 220, 241, 264, 288, 312, 337, 364, 392, 420, 449, 480, 512, 544, 577, 612, 648, 684, 721, 760, 800, 840, 881, 924, 968, 1012, 1057, 1104, 1152, 1200, 1249, 1300, 1352, 1404
Offset: 0

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

Cellular automaton on the first quadrant of the square grid. The sequence gives the number of cells "ON" in the structure after n-th stage. A098181 gives the first differences. For a definition without words see the illustration of initial terms in the example section. For other concentric polygonal numbers see A194273, A194275 and A032528.
Also, union of A046092 and A077221, the bisections of this sequence.
Also row sums of an infinite square array T(n,k) in which column k lists 4*k-1 zeros followed by the numbers A008574 (see example).

Examples

			Using the numbers A008574 we can write:
0, 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
0, 0, 0, 0, 0,  1,   4,  8, 12, 16, 20, ...
0, 0, 0, 0, 0,  0,   0,  0,  0,  1,  4, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, ...
...
Illustration of initial terms:
.                                         o o o o o o
.                             o o o o o   o         o
.                   o o o o   o       o   o   o o   o
.           o o o   o     o   o   o   o   o   o o   o
.     o o   o   o   o     o   o       o   o         o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    4      8        12         17           24
		

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else (n-1)^2 - Self(n-2): n in [1..61]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    Table[Floor[3*n/4] + Floor[(n*(n + 2) + 1)/2] - Floor[(3*n + 1)/4], {n, 0, 52}] (* Arkadiusz Wesolowski, Nov 08 2011 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n^2-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,4,8,12},60] (* Harvey P. Dale, Sep 11 2013 *)
  • Python
    prpr = 0
    prev = 1
    for n in range(2,777):
        print(str(prpr), end=", ")
        curr = n*n - prpr
        prpr = prev
        prev = curr
    # Alex Ratushnyak, Aug 03 2012
    
  • Python
    def A194274(n): return (3*n>>2)+(n*(n+2)+1>>1)-(3*n+1>>2) # Chai Wah Wu, Jul 15 2023
    
  • SageMath
    def A194274(n): return n if n<2 else n^2 - A194274(n-2)
    [A194274(n) for n in range(41)] # G. C. Greubel, Jan 31 2024

Formula

a(n) = n^2 - a(n-2), with a(0)=0, a(1)=1. - Alex Ratushnyak, Aug 03 2012
From R. J. Mathar, Aug 22 2011: (Start)
G.f.: x*(1 + x)/((1 + x^2)*(1 - x)^3).
a(n) = (A005563(n) - A056594(n-1))/2. (End)
a(n) = a(-n-2) = (2*n*(n+2) + (1-(-1)^n)*i^(n+1))/4, where i=sqrt(-1). - Bruno Berselli, Sep 22 2011
a(n) = floor(3*n/4) + floor((n*(n+2)+1)/2) - floor((3*n+1)/4). - Arkadiusz Wesolowski, Nov 08 2011
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5), with a(0)=0, a(1)=1, a(2)=4, a(3)=8, a(4)=12. - Harvey P. Dale, Sep 11 2013
E.g.f.: (exp(x)*x*(3 + x) - sin(x))/2. - Stefano Spezia, Feb 26 2023

A139276 a(n) = n*(8*n+3).

Original entry on oeis.org

0, 11, 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 2646, 2945, 3260, 3591, 3938, 4301, 4680, 5075, 5486, 5913, 6356, 6815, 7290, 7781, 8288, 8811, 9350, 9905, 10476, 11063, 11666, 12285, 12920
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11,..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139272 in the same spiral.

Examples

			a(1)=16*1+0-5=11; a(2)=16*2+11-5=38; a(3)=16*3+38-5=81. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 3*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-5 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(5*x + 11)/(1-x)^3.
E.g.f.: (8*x^2 + 11*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/9 - (sqrt(2)-1)*Pi/6 - 4*log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3. - Amiram Eldar, Mar 17 2022

A139277 a(n) = n*(8*n+5).

Original entry on oeis.org

0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139273 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024

A152745 5 times hexagonal numbers: 5*n*(2*n-1).

Original entry on oeis.org

0, 5, 30, 75, 140, 225, 330, 455, 600, 765, 950, 1155, 1380, 1625, 1890, 2175, 2480, 2805, 3150, 3515, 3900, 4305, 4730, 5175, 5640, 6125, 6630, 7155, 7700, 8265, 8850, 9455, 10080, 10725, 11390, 12075, 12780, 13505, 14250, 15015
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 18 2011
Also sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is one of the four semi-diagonals of the spiral. - Omar E. Pol, Oct 14 2011

Crossrefs

Bisection of A028895.

Programs

  • Magma
    [5*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0, 5, 30}, 50] (* or *) Table[5*n*(2*n-1), {n,0,50}] (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    a(n)=5*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = 10*n^2 - 5*n = A000384(n)*5.
a(n) = a(n-1) + 20*n-15 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Sep 01 2018: (Start)
G.f.: 5*x*(1+ 3*x)/(1-x)^3.
E.g.f.: 5*x*(1+2*x)*exp(x). (End)
From Vaclav Kotesovec, Sep 02 2018: (Start)
Sum_{n>=1} 1/a(n) = 2*log(2)/5.
Sum_{n>=1} (-1)^n/a(n) = log(2)/5 - Pi/10. (End)

A152750 Eight times hexagonal numbers: a(n) = 8*n*(2*n-1).

Original entry on oeis.org

0, 8, 48, 120, 224, 360, 528, 728, 960, 1224, 1520, 1848, 2208, 2600, 3024, 3480, 3968, 4488, 5040, 5624, 6240, 6888, 7568, 8280, 9024, 9800, 10608, 11448, 12320, 13224, 14160, 15128, 16128, 17160, 18224, 19320, 20448, 21608, 22800, 24024, 25280, 26568, 27888, 29240
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Equals Engel expansion of cosh(1/2), except first member (see A067239).
Also sequence found by reading the line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 18 2011
a(n) = the sum of the edges of a rectangular prism having edges 2*(n-1)*n, n^2 - (n-1)^2, and n^2 + (n-1)^2. - J. M. Bergot, Apr 24 2014

Crossrefs

Programs

Formula

a(n) = 16*n^2 - 8*n = 8*A000384(n) = 4*A002939(n) = 2*A085250(n).
a(n) = A067239(n), for n > 0.
a(n) = a(n-1) + 32*n - 24 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From Colin Barker, Sep 25 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 8*x*(1+3*x)/(1-x)^3. (End)
Sum_{n>=1} 1/a(n) = log(2)/4. - Vaclav Kotesovec, Sep 25 2016
E.g.f.: 8*exp(x)*x*(1 + 2*x). - Elmo R. Oliveira, Dec 15 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 - log(2)/8. - Amiram Eldar, May 05 2025

A185868 (Odd,odd)-polka dot array in the natural number array A000027, by antidiagonals.

Original entry on oeis.org

1, 4, 6, 11, 13, 15, 22, 24, 26, 28, 37, 39, 41, 43, 45, 56, 58, 60, 62, 64, 66, 79, 81, 83, 85, 87, 89, 91, 106, 108, 110, 112, 114, 116, 118, 120, 137, 139, 141, 143, 145, 147, 149, 151, 153, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

This is one of four polka dot arrays in the natural number array A000027:
(odd,odd): A185868
(odd,even): A185869
(even,odd): A185870
(even,even): A185871
row 1: A084849
col 1: A000384
col 2: A091823
diag (1,13,...): A102083
diag (4,24,...): A085250
antidiagonal sums: A059722

Examples

			The natural number array A000027 has northwest corner
  1...2...4...7...11
  3...5...8...12..17
  6...9...13..18..24
  10..14..19..25..32
  15..20..26..33..41
The numbers in (odd,odd) positions comprise A185868:
  1....4....11...22...37
  6....13...24...39...58
  15...26...41...60...83
  28...43...62...85...112
		

Crossrefs

Cf. A000027 (as an array), A185872, A185869, A185870, A185871.

Programs

  • Mathematica
    f[n_,k_]:=2n-1+(n+k-2)(2n+2k-3);
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
  • Python
    from math import isqrt, comb
    def A185868(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-comb(a,2)
        y = a-x+1
        return y*((y+(c:=x<<1)<<1)-7)+x*(c-5)+5 # Chai Wah Wu, Jun 18 2025

Formula

T(n,k) = 2*n-1+(n+k-2)*(2*n+2*k-3).
Previous Showing 11-20 of 22 results. Next