cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A132701 Decimal expansion of 11/Pi.

Original entry on oeis.org

3, 5, 0, 1, 4, 0, 8, 7, 4, 8, 0, 2, 1, 6, 9, 7, 3, 8, 6, 9, 1, 5, 4, 4, 2, 7, 9, 4, 1, 9, 5, 3, 1, 5, 9, 6, 4, 7, 5, 8, 1, 1, 2, 2, 0, 6, 2, 9, 0, 0, 4, 1, 8, 7, 2, 4, 4, 8, 6, 8, 1, 5, 6, 9, 2, 9, 5, 7, 2, 9, 5, 4, 7, 9, 5, 2, 9, 8, 3, 7, 7, 1, 9, 8, 2, 5, 0, 3, 6, 6, 0, 8, 5, 7, 5, 6, 7, 8, 9, 1, 0, 3, 3, 6, 0
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			3.501408748021697...
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009

A218387 Decimal expansion of the spanning tree constant of the square lattice.

Original entry on oeis.org

1, 1, 6, 6, 2, 4, 3, 6, 1, 6, 1, 2, 3, 2, 7, 5, 1, 2, 0, 5, 5, 3, 5, 3, 7, 8, 2, 5, 8, 7, 3, 5, 7, 9, 6, 7, 5, 4, 5, 6, 2, 6, 4, 6, 1, 5, 9, 4, 3, 3, 4, 9, 0, 8, 1, 0, 4, 4, 0, 0, 6, 2, 7, 6, 4, 4, 6, 9, 9, 0, 5, 4, 7, 5, 2, 1, 7, 5, 5, 4, 4, 6, 9, 0, 6, 5, 0, 7, 2, 9, 7, 2, 1, 2, 5, 3, 6, 2, 3, 5, 6, 3, 5, 8, 9, 1, 2, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

R. J. Mathar, Oct 27 2012

Keywords

Examples

			1.16624361612327512055353782587357967545626461594...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 5.22.6, pp. 54, 399.
  • Asmus L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an Emphasis on the Markoff Spectrum, in: A. D. Pollington and W. Moran (eds.), Number Theory with an Emphasis on the Markoff Spectrum, Dekker, 1993, pp. 215-226.

Crossrefs

Cf. A006752 (Catalan), A088538 (4/Pi), A229728, A247685.

Programs

  • Magma
    R:= RealField(100); 4*Catalan(R)/Pi(R); // G. C. Greubel, Aug 23 2018
  • Maple
    evalf(Catalan*4/Pi) ;
  • Mathematica
    RealDigits[4*Catalan/Pi, 10, 100][[1]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    default(realprecision, 100); 4*Catalan/Pi \\ G. C. Greubel, Aug 23 2018
    

Formula

Equals the product of A006752 by A088538.
From Amiram Eldar, Jul 22 2020: (Start)
Equals 1 + Sum_{k>=1} (2*k-1)!!^2/((2*k)!!^2 * (2*k + 1)).
Equals Sum_{k>=0} binomial(2*k,k)^2/(16^k * (2*k + 1)). (End)
Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)) [Schmidt] (see Finch). - Stefano Spezia, Nov 07 2024
Equals log(A229728) = A247685/Pi. - Hugo Pfoertner, Nov 07 2024
Equals Integral_{x=0..1} EllipticK(x)/(Pi*sqrt(x)) dx. - Kritsada Moomuang, Jun 21 2025

A076342 a(n) = A076340(A000040(n)), real part of primes mapped as defined in A076340, A076341.

Original entry on oeis.org

2, 4, 4, 8, 12, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 60, 60, 68, 72, 72, 80, 84, 88, 96, 100, 104, 108, 108, 112, 128, 132, 136, 140, 148, 152, 156, 164, 168, 172, 180, 180, 192, 192, 196, 200, 212, 224, 228, 228, 232, 240, 240, 252, 256, 264, 268, 272
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 08 2002

Keywords

Comments

By definition of the map defined in A076340, A076341: 2->(2,0) and p->((floor(p/4)+floor((p mod 4)/2))*4,2-(p mod 4)) for odd primes p.
Number of solutions to x^2 + y^2 = 1 (mod p). - Lekraj Beedassy, Oct 22 2004

Examples

			A000040(11)=31=(32-1) -> (32,-1), therefore a(11)=32 and A070750(11)=-1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p;
      p:= ithprime(n);
      if p mod 4 = 1 then p-1 elif p mod 4 = 3 then p+1 else 2 fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 26 2016
  • Mathematica
    a[1] = 2; a[n_] := With[{p = Prime[n]}, p - JacobiSymbol[-1, p]]; Array[a, 60] (* Jean-François Alcover, Feb 01 2018, after Lekraj Beedassy *)
    a[n_] := Prime[n] - 2 + Mod[Prime[n], 4]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)

Formula

a(n) = p-(-1/p) = p+(-1)^{(p+1)/2} for an odd prime p. {(a/b) stands for the value of the Legendre symbol}. - Lekraj Beedassy, Oct 22 2004
From Amiram Eldar, Dec 24 2022: (Start)
a(n) = A000040(n) - A070750(n).
a(n) = A100484(n) - A082542(n).
Product_{n>=1} a(n)/prime(n) = 4/Pi (A088538). (End)

A211074 Decimal expansion of 4/Pi - 1/2.

Original entry on oeis.org

7, 7, 3, 2, 3, 9, 5, 4, 4, 7, 3, 5, 1, 6, 2, 6, 8, 6, 1, 5, 1, 0, 7, 0, 1, 0, 6, 9, 8, 0, 1, 1, 4, 8, 9, 6, 2, 7, 5, 6, 7, 7, 1, 6, 5, 9, 2, 3, 6, 5, 1, 5, 8, 9, 9, 8, 1, 3, 3, 8, 7, 5, 2, 4, 7, 1, 1, 7, 4, 3, 8, 1, 0, 7, 3, 8, 1, 2, 2, 8, 0, 7, 2, 0, 9, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Equivalent resistance between two nodes on an infinite rectangular lattice of ideal unit resistors, where the nodes are separated by two resistors along one axis and one resistor on the other.

Examples

			0.77323954473516268615107010698011489627567716592365158998133875247117...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4/Pi - 1/2, 10, 87][[1]] (* modified by Harvey P. Dale, Jan 14 2015 *)
  • PARI
    4/Pi-1/2

A120669 Decimal expansion of arccos(1-8/(Pi^2)).

Original entry on oeis.org

1, 3, 8, 0, 2, 1, 4, 1, 8, 2, 7, 4, 9, 0, 7, 9, 9, 0, 4, 0, 0, 8, 7, 5, 5, 8, 1, 8, 1, 4, 1, 7, 0, 1, 4, 4, 0, 1, 3, 9, 6, 6, 6, 1, 9, 9, 4, 0, 0, 1, 0, 2, 1, 7, 4, 0, 7, 6, 9, 3, 1, 2, 2, 7, 9, 6, 9, 6, 4, 0, 3, 9, 1, 1, 0, 0, 9, 2, 6, 8, 1, 7, 8, 1, 4, 1, 0, 5, 7, 5, 5, 1, 7, 0, 3, 8, 5, 0, 0, 8, 9, 7, 6, 3, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jun 22 2006

Keywords

Comments

For a circle with radius r, the measurement in radians of the central angle with endpoints on the circle that are r*4/Pi apart: The average central angle (<= Pi) formed using two randomly chosen points on a circle. The average arc length between such endpoints is r*A120669 corresponding to the average chord length r*A088538; so for the unit circle arc length is A120669 and chord length is A088538.

Examples

			1.38021418274907990400875581814...
		

Crossrefs

Cf. A088538, A120670 (same in degrees), A120671 (A120669/2Pi).

Programs

  • Mathematica
    RealDigits[ArcCos[1-8/Pi^2],10,120][[1]] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    acos(1-8/Pi^2)

A120670 Decimal expansion of 180*arccos(1-8/(Pi^2))/Pi.

Original entry on oeis.org

7, 9, 0, 8, 0, 4, 4, 7, 4, 9, 5, 6, 2, 0, 3, 9, 0, 8, 2, 5, 3, 9, 8, 0, 3, 1, 1, 1, 8, 0, 5, 2, 2, 5, 9, 2, 5, 9, 3, 8, 2, 1, 1, 8, 6, 5, 0, 5, 9, 5, 4, 7, 1, 1, 3, 2, 0, 5, 6, 4, 7, 9, 0, 0, 2, 6, 4, 0, 4, 1, 4, 5, 4, 1, 6, 7, 2, 6, 1, 7, 0, 6, 2, 7, 9, 4, 2, 3, 9, 0, 6, 9, 0, 7, 1, 5, 5, 1, 7, 5, 7, 3, 7, 1, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jun 22 2006

Keywords

Comments

For a circle with radius r, the measurement in degrees of the central angle with endpoints on the circle that are r*4/Pi apart: The average central angle (<= 180 degrees) formed using two randomly chosen points on a circle. The average arc length between such endpoints is r*A120669 corresponding to the average chord length r*A088538; so for the unit circle arc length is A120669 and chord length is A088538.

Examples

			79.0804474956203908253980311180...
		

Crossrefs

Cf. A088538, A120669 (same in radians), A120671 (A120670/360).

Programs

  • Mathematica
    RealDigits[180 ArcCos[1-8/Pi^2]/Pi,10,120][[1]] (* Harvey P. Dale, Feb 17 2023 *)
  • PARI
    180*acos(1-8/Pi^2)/Pi

Formula

Equals 180*A120669/Pi = 360*A120671.

A120671 Decimal expansion of arccos(1-8/(Pi^2)) / (2*Pi).

Original entry on oeis.org

2, 1, 9, 6, 6, 7, 9, 0, 9, 7, 1, 0, 0, 5, 6, 6, 4, 1, 1, 8, 1, 6, 6, 1, 1, 9, 7, 5, 5, 0, 1, 4, 5, 1, 6, 4, 6, 0, 9, 3, 9, 4, 7, 7, 4, 0, 2, 9, 4, 3, 1, 8, 6, 4, 2, 5, 5, 7, 1, 2, 4, 4, 1, 6, 7, 4, 0, 0, 1, 1, 5, 1, 5, 0, 4, 6, 4, 6, 1, 5, 8, 5, 0, 7, 7, 6, 1, 7, 7, 5, 1, 9, 1, 8, 6, 5, 4, 2, 1, 5, 4, 8, 2, 5, 3
Offset: 0

Views

Author

Rick L. Shepherd, Jun 22 2006

Keywords

Comments

The average arc length between two randomly chosen points on a circle of radius r is r*A120669 corresponding to the average chord length r*A088538. (Each arc averaged is no larger than the semicircle.). This sequence is the ratio of that average arc length to the circumference (and is thus also the ratio of the corresponding sector's area to the circle's area).

Examples

			0.219667909710056641181661197550...
		

Crossrefs

Cf. A088538, A120669 (2*Pi*A120671), A120670 (360*A120671).

Programs

  • Mathematica
    RealDigits[ArcCos[(1-(8/(Pi^2) ))]/(2Pi),10,120][[1]] (* Harvey P. Dale, Jun 17 2018 *)
  • PARI
    acos(1-8/Pi^2)/(2*Pi)

Formula

Equals A120669/(2*Pi) = A120670/360.

A132698 Decimal expansion of 8/Pi.

Original entry on oeis.org

2, 5, 4, 6, 4, 7, 9, 0, 8, 9, 4, 7, 0, 3, 2, 5, 3, 7, 2, 3, 0, 2, 1, 4, 0, 2, 1, 3, 9, 6, 0, 2, 2, 9, 7, 9, 2, 5, 5, 1, 3, 5, 4, 3, 3, 1, 8, 4, 7, 3, 0, 3, 1, 7, 9, 9, 6, 2, 6, 7, 7, 5, 0, 4, 9, 4, 2, 3, 4, 8, 7, 6, 2, 1, 4, 7, 6, 2, 4, 5, 6, 1, 4, 4, 1, 8, 2, 0, 8, 4, 4, 2, 6, 0, 0, 4, 9, 3, 7, 5, 2, 9, 7, 1, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			2.5464790894703253723021402139602297925513543318473031799626775049423487621476....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009

A132714 Decimal expansion of 24/Pi.

Original entry on oeis.org

7, 6, 3, 9, 4, 3, 7, 2, 6, 8, 4, 1, 0, 9, 7, 6, 1, 1, 6, 9, 0, 6, 4, 2, 0, 6, 4, 1, 8, 8, 0, 6, 8, 9, 3, 7, 7, 6, 5, 4, 0, 6, 2, 9, 9, 5, 5, 4, 1, 9, 0, 9, 5, 3, 9, 8, 8, 8, 0, 3, 2, 5, 1, 4, 8, 2, 7, 0, 4, 6, 2, 8, 6, 4, 4, 2, 8, 7, 3, 6, 8, 4, 3, 2, 5, 4, 6, 2, 5, 3, 2, 7, 8, 0, 1, 4, 8, 1, 2, 5, 8, 9, 1, 4, 9
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			=7.639437268410976116906420641880689377654062995541909539888032514827...
		

Crossrefs

Programs

Formula

24/Pi = Sum_{k>=0} ( (30*k+7)*C(2*k,k)^2*(Hypergeometric2F1[1/2 - k/2, -k/2, 1, 64])/(-256)^k ). - Alexander R. Povolotsky, Dec 20 2012
Another version of this identity is: Sum[(30*k+7) * Binomial[2k,k]^2 * (Sum[Binomial[k-m,m] * Binomial[k,m] * 16^m, {m,0,k/2}])/(256)^k, {k,0,infinity}]. - Alexander R. Povolotsky, Jan 25 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 03 2009

A277235 Decimal expansion of 2/(Gamma(3/4))^4.

Original entry on oeis.org

8, 8, 6, 9, 4, 1, 1, 6, 8, 5, 7, 8, 1, 1, 5, 4, 0, 5, 4, 1, 1, 5, 2, 5, 3, 6, 1, 3, 5, 4, 5, 2, 1, 5, 3, 8, 6, 8, 6, 4, 9, 9, 9, 1, 9, 6, 4, 2, 5, 9, 8, 3, 4, 8, 3, 0, 9, 8, 6, 0, 9, 8, 9, 8, 1, 3, 1, 7, 8, 2, 5, 5, 9, 4, 8, 1, 9, 2, 7, 9, 7, 0, 6, 9, 1, 5, 2, 6, 4, 7, 7, 9, 4, 9, 8, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
The proof of Hardy and Whipple mentioned in the Hardy reference reduces this series to (2/Pi)*Morley's series (for m=1/2). For this series see A277232 and A091670.

Examples

			2/Gamma(3/4)^4 = 0.88694116857811540541152...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
    

Formula

Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Equals A060294 * A091670.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k) / A074800(k).
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A088538 * A014549^2.
Equals A263809/Pi. (End)
Previous Showing 11-20 of 44 results. Next