cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A139346 Decimal expansion of cosine of the golden ratio, negated. That is, the decimal expansion of -cos((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 2, 0, 0, 9, 6, 2, 5, 4, 3, 5, 9, 8, 3, 3, 7, 6, 6, 8, 7, 8, 6, 9, 4, 0, 4, 8, 7, 9, 4, 5, 6, 5, 4, 9, 5, 5, 4, 8, 9, 9, 4, 7, 2, 7, 3, 4, 2, 7, 8, 1, 3, 2, 8, 1, 8, 2, 1, 9, 8, 2, 7, 8, 3, 5, 3, 3, 0, 1, 1, 6, 7, 0, 6, 3, 5, 9, 5, 5, 6, 3, 6, 8, 1, 2, 3, 8, 9, 8, 2, 3, 3, 2, 2, 6, 0, 5, 3, 2, 2, 8
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-0.04722009625435983376687869404879456549554899472734...
		

Crossrefs

Programs

Formula

Equals 1/A139349. - Amiram Eldar, Feb 07 2022

Extensions

Edited by N. J. A. Sloane, Dec 11 2008

A144749 Decimal expansion of the golden ratio powered to itself.

Original entry on oeis.org

2, 1, 7, 8, 4, 5, 7, 5, 6, 7, 9, 3, 7, 5, 9, 9, 1, 4, 7, 3, 7, 2, 5, 4, 5, 7, 0, 2, 8, 7, 1, 2, 4, 5, 8, 5, 1, 8, 0, 7, 0, 4, 3, 3, 0, 1, 6, 9, 3, 2, 5, 4, 6, 1, 1, 3, 4, 7, 7, 8, 1, 9, 2, 4, 0, 4, 7, 4, 4, 0, 4, 4, 9, 5, 3, 2, 8, 2, 6, 2, 0, 2, 1, 0, 7, 0, 1, 6, 7, 6, 1, 1, 9, 7, 6, 7, 0, 5, 8, 7, 6, 5, 4, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Sep 20 2008

Keywords

Comments

See A092134 for the continued fraction of this value, phi^phi, where phi = (sqrt(5)+1)/2 = A001622. - M. F. Hasler, Oct 08 2014

Examples

			Equals 2.178457567937599147372545702871245851807043301693254611347781924...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[GoldenRatio^GoldenRatio,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    (t=(sqrt(5)+1)/2)^t \\ Use \p99 to get 99 digits; digits(%\.1^99) for the sequence of digits. - M. F. Hasler, Oct 08 2014
    
  • SageMath
    numerical_approx(golden_ratio^golden_ratio, digits=120) # G. C. Greubel, Jun 16 2022

Formula

A374755 Decimal expansion of the surface area of a regular dodecahedron having unit inradius.

Original entry on oeis.org

1, 6, 6, 5, 0, 8, 7, 3, 0, 8, 5, 5, 4, 6, 5, 3, 0, 8, 0, 7, 2, 1, 1, 2, 9, 6, 3, 4, 0, 9, 8, 5, 5, 1, 7, 7, 2, 2, 2, 1, 2, 7, 9, 4, 6, 3, 8, 6, 4, 7, 4, 9, 6, 6, 0, 1, 3, 3, 5, 2, 6, 1, 5, 9, 0, 6, 1, 6, 5, 1, 0, 1, 2, 1, 9, 9, 9, 7, 3, 5, 7, 0, 9, 4, 4, 8, 8, 1, 6, 6
Offset: 2

Views

Author

Paolo Xausa, Jul 20 2024

Keywords

Comments

Bezdek's strong dodecahedral conjecture (proved by Hales, see links) states that, in any packing of unit spheres in the Euclidean 3-space, the surface area of every bounded Voronoi cell is at least this value.

Examples

			16.6508730855465308072112963409855177222127946386...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374772, A374837, A374838.

Programs

  • Mathematica
    First[RealDigits[30*Sqrt[130 - 58*Sqrt[5]], 10, 100]]

Formula

Equals 30*sqrt(130 - 58*sqrt(5)).
Equals 60*sqrt(3 - A001622)/A098317.
Equals 4*Pi/A374772.
Equals 3*A374753.
Minimal polynomial: x^4 - 234000*x^2 + 64800000. - Stefano Spezia, Sep 03 2025

A139347 Decimal expansion of negated tangent of the golden ratio. That is, the decimal expansion of -tan((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 5, 3, 8, 0, 0, 7, 8, 2, 4, 9, 3, 2, 7, 4, 6, 4, 8, 5, 8, 6, 2, 8, 1, 1, 7, 0, 3, 2, 5, 8, 2, 5, 5, 9, 7, 8, 8, 1, 2, 4, 3, 6, 7, 4, 6, 4, 8, 2, 6, 0, 8, 6, 3, 7, 0, 7, 5, 6, 8, 9, 4, 5, 9, 9, 4, 5, 9, 8, 7, 2, 7, 5, 9, 3, 2, 8, 2, 0, 2, 6, 8, 0, 0, 3, 5, 4, 7, 7, 5, 6, 0, 6, 9, 6, 3, 4, 2, 5, 8, 1, 4, 5
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-21.15380078249327464858628117032582559788124367464826...
		

Crossrefs

Programs

Formula

Equals tan(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139348.
Equals A139345/A139346. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign added to definition by R. J. Mathar, Feb 05 2009

A139348 Decimal expansion of negated cotangent of the golden ratio. That is, the decimal expansion of -cot((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 7, 2, 8, 2, 8, 6, 6, 4, 7, 9, 4, 4, 8, 1, 1, 8, 9, 3, 5, 6, 5, 0, 9, 6, 0, 6, 2, 1, 6, 3, 3, 4, 2, 0, 0, 5, 6, 1, 0, 5, 7, 2, 2, 5, 5, 6, 5, 3, 3, 0, 9, 7, 7, 2, 9, 9, 2, 5, 3, 2, 4, 7, 9, 8, 7, 7, 2, 2, 1, 4, 5, 2, 5, 6, 8, 8, 1, 6, 8, 7, 9, 8, 8, 7, 5, 0, 5, 2, 9, 9, 3, 8, 8, 0, 7, 0, 2, 1, 5, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.04727282866479448118935650960621633420056105722556...
		

Crossrefs

Programs

Formula

Equals cot(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139347.
Equals A139346/A139345. (End)

Extensions

Added sign in definition. Leading zero dropped by R. J. Mathar, Feb 05 2009

A261391 a(n) = n^5 + 5*n^3 + 5*n.

Original entry on oeis.org

0, 11, 82, 393, 1364, 3775, 8886, 18557, 35368, 62739, 105050, 167761, 257532, 382343, 551614, 776325, 1069136, 1444507, 1918818, 2510489, 3240100, 4130511, 5206982, 6497293, 8031864, 9843875, 11969386, 14447457, 17320268, 20633239, 24435150, 28778261, 33718432, 39315243, 45632114
Offset: 0

Views

Author

Raphael Ranna, Aug 17 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^5 - 1/(n-th metallic mean)^5, see link to Wikipedia.

Crossrefs

Programs

  • Mathematica
    Array[#^5 + 5 #^3 + 5 # &, 34] (* Michael De Vlieger, Aug 18 2015 *)
    Table[n^5 + 5*n^3 + 5*n, {n,0, 50}] (* G. C. Greubel, Aug 21 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,11,82,393,1364,3775},40] (* Harvey P. Dale, May 07 2018 *)
  • PARI
    concat(0, Vec(x*(11*x^4+16*x^3+66*x^2+16*x+11)/(x-1)^6 + O(x^100))) \\ Colin Barker, Aug 18 2015

Formula

a(n) = ( (n+sqrt(n^2+4))/2 )^5 - 1/( (n+sqrt(n^2+4))/2 )^5.
a(n) = -a(-n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Colin Barker, Aug 18 2015
G.f.: x*(11*x^4+16*x^3+66*x^2+16*x+11) / (x-1)^6. - Colin Barker, Aug 18 2015
E.g.f.: (x^5 + 15*x^4 + 70*x^3 + 120*x^2 + 71*x + 11)*e^x. - G. C. Greubel, Aug 21 2015

Extensions

Offset changed from 1 to 0, initial 0 added and b-file adapted from Bruno Berselli, Aug 25 2015

A037451 a(n) = Fibonacci(n) * Fibonacci(2*n).

Original entry on oeis.org

0, 1, 3, 16, 63, 275, 1152, 4901, 20727, 87856, 372075, 1576279, 6676992, 28284569, 119814747, 507544400, 2149990983, 9107510539, 38580029568, 163427634589, 692290558575, 2932589884016, 12422650070163, 52623190204271, 222915410823168, 944284833600625, 4000054745057907, 16944503814103696, 71778070001033487
Offset: 0

Views

Author

Gary W. Adamson, Feb 01 2000

Keywords

Comments

Let F(n) = Fibonacci(n), then abs(det([F(n), F(n+k); F(n+2k), F(n+3k)])) = a(k), independent of n. - R. M. Welukar, Aug 26 2014
From Joerg Arndt, Aug 26 2014: (Start)
This is a special case of Johnson's identity (relation 32 in the Mathworld link).
F(a)*F(b) - F(c)*F(d) = (-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)), where a+b = c+d and r arbitrary.
Here a = n, b = n+3*k, c = n+k, d = n+2*k, and r = c, so that
(-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)) =
(-1)^c*(F(a-c)*F(b-c) - F(c-c)*F(d-c)) =
(-1)^c*(F(a-c)*F(b-c) - 0) =
(-1)^c*(F(-k)*F(-2*k)), taking the absolute value gives a(k).
(End)
Let L(n) = A000032(n), then abs(det([L(n), L(n+k); L(n+2k), L(n+3k)])) = 5*a(k), independent of n. - M. N. Deshpande and R. M. Welukar, Aug 30 2014

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    seq((fibonacci(2*n)*fibonacci(n)), n=0..25); # Zerinvary Lajos, Jun 24 2006
  • Mathematica
    Table[Fibonacci[n]Fibonacci[2n],{n,0,40}] (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    concat([0], Vec( x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)) + O(x^66) ) ) \\ Joerg Arndt, Aug 26 2014

Formula

From Emanuele Munarini, Jul 18 2003: (Start)
G.f.: ( x + x^3 )/( 1 - 3 x - 6 x^2 + 3 x^3 + x^4 ).
a(n+4) = 3*a(n+3) + 6*a(n+2) - 3*a(n+1) - a(n).
(End)
G.f.: x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)). - Joerg Arndt, Aug 26 2014
a(n) = (1/5)*(Lucas(3*n) - (-1)^n*Lucas(n)) = (1/5)*(Lucas(3*n) - Lucas(-n)). In general, for r = s (mod 2) the sequence Lucas(r*n) - Lucas(s*n) is a divisibility sequence. Cf. A273622. - Peter Bala, May 27 2016
Lim_{n->infinity} a(n+1)/a(n) = 2 + sqrt(5) = A098317. - Ilya Gutkovskiy, Jun 01 2016
a(n) = (-(1/2*(-1-sqrt(5)))^n+(2-sqrt(5))^n-(1/2*(-1+sqrt(5)))^n+(2+sqrt(5))^n)/5. - Colin Barker, Jun 03 2016

A139349 Decimal expansion of negated secant of the golden ratio. That is, the decimal expansion of -sec((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 7, 7, 4, 2, 4, 0, 0, 6, 3, 6, 6, 1, 4, 4, 4, 0, 8, 7, 2, 8, 0, 4, 0, 4, 0, 9, 3, 7, 1, 3, 0, 2, 1, 3, 3, 0, 7, 1, 8, 5, 3, 5, 5, 3, 6, 4, 1, 7, 4, 0, 6, 1, 7, 5, 4, 3, 5, 6, 5, 6, 6, 7, 8, 9, 4, 6, 1, 6, 1, 8, 5, 2, 9, 6, 3, 3, 7, 1, 6, 9, 2, 4, 2, 6, 8, 3, 7, 9, 4, 9, 2, 4, 6, 5, 3, 3, 1, 8, 7, 3, 3, 6
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			21.17742400636614440872804040937130213307185355364174...
		

Crossrefs

Programs

Formula

Equals sec(A001622).
Equals 1/A139346. - Amiram Eldar, Feb 07 2022

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign in definition added by R. J. Mathar, Feb 05 2009

A139350 Decimal expansion of csc((1+sqrt(5))/2), where (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 6, 7, 3, 6, 6, 1, 4, 6, 5, 2, 2, 5, 4, 8, 9, 6, 1, 6, 7, 1, 1, 3, 5, 1, 7, 0, 5, 5, 8, 7, 7, 9, 4, 4, 6, 1, 5, 3, 1, 8, 0, 6, 6, 2, 4, 2, 8, 2, 0, 2, 8, 2, 4, 0, 4, 9, 7, 6, 6, 5, 7, 8, 8, 2, 6, 9, 7, 8, 7, 7, 5, 5, 0, 9, 6, 1, 7, 2, 9, 4, 7, 0, 3, 9, 9, 5, 8, 1, 1, 1, 3, 6, 1, 9, 2, 6, 8, 8, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.00111673661465225489616711351705587794461531806624...
		

Crossrefs

Programs

Formula

Equals 1/A139345. - Amiram Eldar, Feb 07 2022

Extensions

Edited by Bruno Berselli, Feb 19 2013

A140232 a(n) = ceiling(n*exp((1+sqrt(5))/2)).

Original entry on oeis.org

6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 1

Views

Author

Mohammad K. Azarian, May 13 2008

Keywords

Crossrefs

Programs

  • Magma
    phi:=(1+Sqrt(5))/2; [Ceiling(n*Exp(phi)): n in [1..60]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    Ceiling[Exp[GoldenRatio]*Range[60]] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    phi=(1+sqrt(5))/2; vector(60, n, ceil(n*exp(phi)) ) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [ceil(n*exp(golden_ratio)) for n in (1..60)] # G. C. Greubel, Jun 30 2019

Formula

a(n) = ceiling(n*A139341). - R. J. Mathar, Feb 06 2009
Previous Showing 21-30 of 45 results. Next