cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A169803 Triangle read by rows: T(n,k) = binomial(n+1-k,k) (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 4, 3, 0, 0, 1, 5, 6, 1, 0, 0, 1, 6, 10, 4, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 0, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 0, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 0, 0, 0, 0, 1, 12, 55, 120, 126, 56, 7, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Nadia Heninger and N. J. A. Sloane, May 21 2010

Keywords

Comments

T(n,k) = 0 if k <0 or k > n+1-k.
T(n,k) is the number of binary vectors of length n and weight k containing no pair of adjacent 1's.
Take Pascal's triangle A007318 and push the k-th column downwards by 2k-1 places (k>=1).
Row sums are A000045.
From Emanuele Munarini, May 24 2011: (Start)
Diagonal sums are A000930(n+1).
A sparse subset (or scattered subset) of {1,2,...,n} is a subset never containing two consecutive elements. T(n,k) is the number of sparse subsets of {1,2,...,n} having size k. For instance, for n=4 and k=2 we have the 3 sparse 2-subsets of {1,2,3,4}: 13, 14, 24. (End)
As a triangle, row 2*n-1 consists of the coefficients of Morgan-Voyce polynomial B(n,x), A172431, and row 2*n to the coefficients of Morgan-Voyce polynomial b(n,x), A054142.
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014
Antidiagonals of the Pascal matrix A007318 read bottom to top, omitting the first antidiagonal. These are also the antidiagonals (omitting the first antidiagonal) read from top to bottom of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Reverse is embedded in A102426. - Tom Copeland, Jul 02 2018

Examples

			Triangle begins:
  [1]
  [1, 1]
  [1, 2, 0]
  [1, 3, 1, 0]
  [1, 4, 3, 0, 0]
  [1, 5, 6, 1, 0, 0]
  [1, 6, 10, 4, 0, 0, 0]
  [1, 7, 15, 10, 1, 0, 0, 0]
  [1, 8, 21, 20, 5, 0, 0, 0, 0]
  [1, 9, 28, 35, 15, 1, 0, 0, 0, 0]
  [1, 10, 36, 56, 35, 6, 0, 0, 0, 0, 0]
  [1, 11, 45, 84, 70, 21, 1, 0, 0, 0, 0, 0]
  [1, 12, 55, 120, 126, 56, 7, 0, 0, 0, 0, 0, 0]
  [1, 13, 66, 165, 210, 126, 28, 1, 0, 0, 0, 0, 0, 0]
  [1, 14, 78, 220, 330, 252, 84, 8, 0, 0, 0, 0, 0, 0, 0]
  [1, 15, 91, 286, 495, 462, 210, 36, 1, 0, 0, 0, 0, 0, 0, 0]
  [1, 16, 105, 364, 715, 792, 462, 120, 9, 0, 0, 0, 0, 0, 0, 0, 0]
  [1, 17, 120, 455, 1001, 1287, 924, 330, 45, 1, 0, 0, 0, 0, 0, 0, 0, 0]
  [1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  [1, 19, 153, 680, 1820, 3003, 3003, 1716, 495, 55, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  ...
		

Crossrefs

Cf. A000045, A000930, A007318, A011973 (another version), A218272.
All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways. - N. J. A. Sloane, May 29 2011
A172431 and A054142 describe the odd and even lines of the triangle.

Programs

  • Mathematica
    T[n_,k_]:= Binomial[n+1-k,k]; Table[T[n,k],{n,0,12},{k,0,n}]//Flatten (* Stefano Spezia, Sep 16 2024 *)
  • Maxima
    create_list(binomial(n-k+1,k),n,0,20,k,0,n); /* Emanuele Munarini, May 24 2011 */
    
  • PARI
    T(n,k)=binomial(n+1-k,k) \\ Charles R Greathouse IV, Oct 24 2012

A092865 Nonzero elements in Klee's identity Sum[(-1)^k binomial[n,k]binomial[n+k,m],{k,0,n}] == (-1)^n binomial[n,m-n].

Original entry on oeis.org

1, -1, -1, 1, 2, -1, 1, -3, 1, -3, 4, -1, -1, 6, -5, 1, 4, -10, 6, -1, 1, -10, 15, -7, 1, -5, 20, -21, 8, -1, -1, 15, -35, 28, -9, 1, 6, -35, 56, -36, 10, -1, 1, -21, 70, -84, 45, -11, 1, -7, 56, -126, 120, -55, 12, -1, -1, 28, -126, 210, -165, 66, -13, 1, 8, -84, 252, -330, 220, -78, 14, -1, 1, -36, 210, -462, 495
Offset: 0

Views

Author

Eric W. Weisstein, Mar 07 2004

Keywords

Comments

Triangle, with zeros omitted, given by (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 26 2011
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014

Examples

			1;
-1;
-1, 1;
2, -1;
1, -3, 1;
-3, 4, -1;
-1, 6, -5, 1;
4, -10, 6, -1;
Triangle (0, 1, -1, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, ...) begins:
1
0, -1
0, -1, 1
0, 0, 2, -1
0, 0, 1, -3, 1
0, 0, 0, -3, 4, -1
0, 0, 0, -1, 6, -5, 1 ... - _Philippe Deléham_, Dec 26 2011
		

Crossrefs

All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways. - N. J. A. Sloane, May 29 2011

Programs

  • Mathematica
    Flatten[Table[(-1)^n Binomial[n, m-n], {m, 0, 20}, {n, Ceiling[m/2], m}]]

Formula

G.f.: 1/(1+y*x+y*x^2). - Philippe Deléham, Feb 08 2012

A248752 Decimal expansion of limit of the imaginary part of f(1-i,n)/f(1-i,n+1), where f(x,n) is the n-th Fibonacci polynomial.

Original entry on oeis.org

2, 5, 7, 0, 6, 5, 8, 6, 4, 1, 2, 1, 6, 7, 7, 1, 6, 0, 9, 0, 8, 5, 6, 8, 0, 6, 2, 0, 5, 2, 7, 3, 3, 7, 1, 8, 9, 0, 3, 7, 5, 7, 0, 0, 7, 9, 9, 8, 8, 1, 3, 4, 9, 4, 5, 2, 4, 1, 3, 0, 7, 9, 3, 7, 8, 0, 9, 4, 2, 2, 3, 6, 0, 4, 3, 1, 2, 1, 4, 5, 0, 9, 4, 0, 7, 6
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

The analogous limit of f(1,n)/f(1,n+1) is the golden ratio (A001622).

Examples

			limit = 0.2570658641216771609085680620527337189037570...
Let q(x,n) = f(x,n)/f(x,n+1) and c = 1-i.
n   f(x,n)            Re(q(c,n))   Im(q(c,n))
1   1                 1/2          1/2
2   x                 3/5          1/5
3   1 + x^2           1/2          1/4
4   2*x + x^3         8/15         4/15
5   1 + 3*x^2 + x^4   69/130       33/130
Re(q(1-i,11)) = 5021/9490 = 0.5290832...
Im(q(1-i,11)) = 4879/18980 = 0.257060...
		

Crossrefs

Programs

  • Maple
    evalf((1-sqrt(sqrt(5)-2))/2, 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    z = 300; t = Table[Fibonacci[n, x]/Fibonacci[n + 1, x], {n, 1, z}];
    u = t /. x -> 1 - I;
    d1 = N[Re[u][[z]], 130]
    d2 = N[Im[u][[z]], 130]
    r1 = RealDigits[d1]  (* A248751 *)
    r2 = RealDigits[d2]  (* A248752 *)

Formula

Equals (1-sqrt(sqrt(5)-2))/2. - Vaclav Kotesovec, Oct 19 2014
From Wolfdieter Lang, Mar 02 2018: (Start)
Equals (1 - (2 - phi)*sqrt(phi))/2, with phi = A001622.
Equals (1/10)*y*(1 - (1/50)*y^2) with y = A300070. (End)

A033538 a(0)=1, a(1)=1, a(n) = 3*a(n-1) + a(n-2) + 1.

Original entry on oeis.org

1, 1, 5, 17, 57, 189, 625, 2065, 6821, 22529, 74409, 245757, 811681, 2680801, 8854085, 29243057, 96583257, 318992829, 1053561745, 3479678065, 11492595941, 37957465889, 125364993609, 414052446717, 1367522333761, 4516619448001, 14917380677765, 49268761481297
Offset: 0

Views

Author

Keywords

Comments

Number of times certain simple recursive programs (such as the Lisp program shown) call themselves on an input of length n.
This is the sequence A(1,1;3,1;1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010

References

  • E. Hyvönen and J. Seppänen, LISP-kurssi, Osa 6 (Funktionaalinen ohjelmointi), Prosessori 4/1983, pp. 48-50 (in Finnish).

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..40] do a[n]:=3*a[n-1]+a[n-2] +1; od; a; # G. C. Greubel, Jul 10 2019
  • Haskell
    a033538 n = a033538_list !! n
    a033538_list =
       1 : 1 : (map (+ 1) $ zipWith (+) a033538_list
                                        $ map (3 *) $ tail a033538_list)
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Lisp
    (defun rewerse (lista) (cond ((null (cdr lista)) lista) (t (cons (car (rewerse (cdr lista))) (rewerse (cons (car lista) (rewerse (cdr (rewerse (cdr lista))))))))))
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 3*Self(n-1) +Self(n-2) +1: n in [1..40]]; // G. C. Greubel, Jul 10 2019
    
  • Maple
    a := proc(n) option remember; if(n < 2) then RETURN(1); else RETURN(3*a(n-1)+a(n-2)+1); fi; end;
  • Mathematica
    CoefficientList[ Series[(1-3x+3x^2)/(1-4x+2x^2+x^3), {x,0,40}], x](* Jean-François Alcover, Nov 30 2011 *)
    RecurrenceTable[{a[0]==a[1]==1,a[n]==3a[n-1]+a[n-2]+1},a,{n,40}] (* or *) LinearRecurrence[{4,-2,-1},{1,1,5},41] (* Harvey P. Dale, Jan 05 2012 *)
    Table[(4*(Fibonacci[n,3] +Fibonacci[n-1,3]) -1)/3, {n,0,30}] (* G. C. Greubel, Oct 13 2019 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,-2,4]^n*[1;1;5])[1,1] \\ Charles R Greathouse IV, Feb 19 2017
    
  • Sage
    ((1-3*x+3*x^2)/((1-x)*(1-3*x-x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
    

Formula

From R. J. Mathar, Aug 22 2008: (Start)
O.g.f.: (1-3*x+3*x^2)/((1-x)*(1-3*x-x^2)).
a(n) = (4*A006190(n+1) - 8*A006190(n) - 1)/3. (End)
a(n) = 4*a(n-1) - 2*a(n-2) - a(n-3), a(0)=1=a(1), a(2)=5. Observed by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(n) = (4*(F(n,3) + F(n-1,3)) -1)/3, where F(n,x) is the Fibonacci polynomial (see A102426). - G. C. Greubel, Oct 13 2019

A284938 Triangle read by rows: coefficients of the edge cover polynomial for the n-path graph P_n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 5, 1, 0, 0, 0, 0, 0, 4, 10, 6, 1, 0, 0, 0, 0, 0, 1, 10, 15, 7, 1, 0, 0, 0, 0, 0, 0, 5, 20, 21, 8, 1, 0, 0, 0, 0, 0, 0, 1, 15, 35, 28, 9, 1, 0, 0, 0, 0, 0, 0, 0, 6, 35, 56, 36, 10, 1, 0, 0, 0, 0, 0, 0, 0, 1, 21, 70, 84, 45, 11, 1
Offset: 1

Views

Author

Eric W. Weisstein, Apr 06 2017

Keywords

Examples

			0;
0,1;
0,0,1;
0,0,1,1;
0,0,0,2,1;
0,0,0,1,3,1;
0,0,0,0,3,4,1;
0,0,0,0,1,6,5,1;
0,0,0,0,0,4,10,6,1;
0,0,0,0,0,1,10,15,7,1;
0,0,0,0,0,0,5,20,21,8,1;
0,0,0,0,0,0,1,15,35,28,9,1;
0,0,0,0,0,0,0,6,35,56,36,10,1;
0,0,0,0,0,0,0,1,21,70,84,45,11,1;
...
		

Crossrefs

Unsigned version of A057094.
Row sums are A000045(n-1).

Programs

  • Mathematica
    Prepend[CoefficientList[Table[x^(n/2) Fibonacci[n - 1, Sqrt[x]], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    Prepend[CoefficientList[LinearRecurrence[{x, x}, {0, x}, {2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)

Formula

a(n) = abs(A057094(n)).

A102428 Central column of triangle A102427.

Original entry on oeis.org

1, 3, 6, 28, 55, 286, 560, 3060, 5985, 33649, 65780, 376740, 736281, 4272048, 8347680, 48903492, 95548245, 563921995, 1101716330, 6540715896, 12777711870, 76223753060, 148902215280, 891794789340, 1742058970275, 10468434365991
Offset: 0

Views

Author

Russell Walsmith, Jan 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[Floor[(5n+2)/2],Floor[(n+1)/2]],{n,0,30}] (* Harvey P. Dale, Mar 13 2015 *)

Formula

a(n) = binomial(floor((5*n+2)/2), floor((n+1)/2)). - David Wasserman, Apr 04 2008

Extensions

More terms from David Wasserman, Apr 04 2008

A102429 Row sums of A102427.

Original entry on oeis.org

1, 2, 6, 11, 23, 44, 85, 163, 311, 594, 1132, 2158, 4112, 7835, 14928, 28441, 54186, 103234, 196679, 374707, 713880, 1360061, 2591143, 4936559, 9404966, 17918024, 34136814, 65036304, 123904967, 236059552, 449732673, 856815474, 1632375854
Offset: 0

Views

Author

Russell Walsmith, Jan 11 2005

Keywords

Examples

			1=1, 1+1=2, 1+3+2=6; 1+5+4+1=11
		

Crossrefs

Formula

G.f.: (1+x^2-x^3)/((1-x)*(1-x-2*x^2+x^4)). - Vladeta Jovovic, Apr 05 2005

Extensions

More terms from Vladeta Jovovic, Apr 05 2005

A108756 A triangle related to the Jacobsthal polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 4, 5, 1, 1, 3, 6, 6, 7, 1, 1, 1, 10, 15, 8, 9, 1, 1, 4, 10, 21, 28, 10, 11, 1, 1, 1, 20, 35, 36, 45, 12, 13, 1, 1, 5, 15, 56, 84, 55, 66, 14, 15, 1, 1, 1, 35, 70, 120, 165, 78, 91, 16, 17, 1, 1, 6, 21, 126, 210, 220, 286, 105, 120, 18, 19, 1, 1
Offset: 0

Views

Author

Paul Barry, Jun 22 2005

Keywords

Comments

Riordan array ((1 + x - x^2)/(1 - x^2)^2, x/(1 - x^2)^2). Row sums are A108742. Diagonal sums are Fibonacci(n+1) = A000045(n+1). Corresponding diagonals triangle is A102426.

Examples

			Triangle begins (with rows n >= 0 and columns k >= 0) as follows:
  1;
  1,  1;
  1,  1,  1;
  2,  3,  1,  1;
  1,  4,  5,  1,  1;
  3,  6,  6,  7,  1,  1;
  1, 10, 15,  8,  9,  1,  1;
  4, 10, 21, 28, 10, 11,  1,  1;
  1, 20, 35, 36, 45, 12, 13,  1, 1;
  5, 15, 56, 84, 55, 66, 14, 15, 1, 1; ...
		

Crossrefs

Programs

  • Magma
    [[Binomial(Floor((n+k+1)/2)+k, Floor((n+k)/2)-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 29 2019
    
  • Mathematica
    Table[Binomial[Floor[(n+k+1)/2]+k, Floor[(n+k)/2]-k], {n,0,12}, {k,0,n} ]//Flatten (* G. C. Greubel, May 29 2019 *)
  • PARI
    {T(n,k) = binomial(floor((n+k+1)/2)+k, floor((n+k)/2)-k)}; \\ G. C. Greubel, May 29 2019
    
  • Sage
    [[binomial(floor((n+k+1)/2)+k, floor((n+k)/2)-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 29 2019

Formula

Number triangle: T(n, k) = binomial(floor((n + k + 1)/2) + k, floor((n + k)/2 - k)) for 0 <= k <= n.
From Petros Hadjicostas, May 30 2019: (Start)
Bivariate g.f.: Sum_{n, k > = 0} T(n,k) * x^n * y^k = (1 + x - x^2)/((1 - x^2)^2 - x * y). (Here, we assume T(n, k) = 0 for n < k. Because T(n, k) = A102426(n + 1 + k, k), we may use Tom Copeland's g.f. of the latter array, to get the g.f. of the current triangular array.)
G.f. for column k >= 0: (1 + x - x^2) * x^k/(1 - x^2)^(2*k + 2).
Recurrence: T(n, k) = T(n - 2, k) + T(n - (1 - (-1)^(n + k))/2, k - (1 + (-1)^(n + k))/2), for n >= 3 and 1 <= k <= n - 2, starting with T(n, n) = 1 = T(n + 1, n) for n >= 0, T(n, 0) = 1 when n is even >= 0, and T(n, 0) = (n + 1)/2 when n is odd >= 1.
Another recurrence: T(n, k) = T(n - 1, k - 1) + 2*T(n - 2, k) - T(n - 4, k) for n >= 4 and 1 <= k <= n - 4. (This follows from the fact that the denominator of the bivariate g.f. is x^0 * y^0 - x^1 * y^1 - 2 * x^2 * y^0 - x^4 * y^0.)
(End)

Extensions

More terms from Petros Hadjicostas, May 29 2019

A175685 Array a(n,m) = Sum_{j=floor((n-1)/2)-m..floor(n-1)/2} binomial(n-j-1,j) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 7, 5, 3, 2, 1, 1, 4, 7, 8, 5, 3, 2, 1, 1, 1, 14, 12, 8, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Roger L. Bagula, Dec 04 2010

Keywords

Comments

A102426 defines an array of binomials in which partial sums of row n yield row a(n,.).

Examples

			a(n,m) starts in row n=1 as
  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
  2,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3, ...
  1,  4,  5,  5,  5,  5,  5,  5,  5,  5,  5, ...
  3,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8, ...
  1,  7, 12, 13, 13, 13, 13, 13, 13, 13, 13, ...
  4, 14, 20, 21, 21, 21, 21, 21, 21, 21, 21, ...
  1, 11, 26, 33, 34, 34, 34, 34, 34, 34, 34, ...
		

References

  • Burton, David M., Elementary number theory, McGraw Hill, N.Y., 2002, p. 286.

Crossrefs

Programs

  • Maple
    A175685 := proc(n,m) upl := floor( (n-1)/2) ; add( binomial(n-j-1,j),j=upl-m .. upl) ; end proc: # R. J. Mathar, Dec 05 2010
  • Mathematica
    a = Table[Table[Sum[Binomial[n -j - 1, j], {j, Floor[(n - 1)/2] - m, Floor[(n - %t 1)/2]}], {n, 0, 10}], {m, 0, 10}];
    Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}];Flatten[%]

A248751 Decimal expansion of limit of the real part of f(1-i,n)/f(1-i,n+1), where f(x,n) is the n-th Fibonacci polynomial.

Original entry on oeis.org

5, 2, 9, 0, 8, 5, 5, 1, 3, 6, 3, 5, 7, 4, 6, 1, 2, 5, 1, 6, 0, 9, 9, 0, 5, 2, 3, 7, 9, 0, 2, 2, 5, 2, 1, 0, 6, 1, 9, 3, 6, 5, 0, 4, 9, 8, 3, 8, 9, 0, 9, 7, 4, 3, 1, 4, 0, 7, 7, 1, 1, 7, 6, 3, 2, 0, 2, 3, 9, 8, 1, 1, 5, 7, 9, 1, 8, 9, 4, 6, 2, 7, 7, 1, 1, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

The analogous limit of f(1,n)/f(1,n+1) is the golden ratio (A001622).
Differs from A248749 only in the first digit. - R. J. Mathar, Oct 23 2014

Examples

			limit = 0.52908551363574612516099052379022521061936504...
Let q(x,n) = f(x,n)/f(x,n+1) and c = 1-i.
n   f(x,n)            Re(q(c,n))   Im(q(c,n))
1   1                 1/2          1/2
2   x                 3/5          1/5
3   1 + x^2           1/2          1/4
4   2*x + x^3         8/15         4/15
5   1 + 3*x^2 + x^4   69/130       33/130
Re(q(1-i,11)) = 5021/9490 = 0.5290832...
Im(q(1-i,11)) = 4879/18980 = 0.257060...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(2+sqrt(5))-1)/2, 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    z = 300; t = Table[Fibonacci[n, x]/Fibonacci[n + 1, x], {n, 1, z}];
    u = t /. x -> 1 - I;
    d1 = N[Re[u][[z]], 130]
    d2 = N[Im[u][[z]], 130]
    r1 = RealDigits[d1]  (* A248751 *)
    r2 = RealDigits[d2]  (* A248752 *)
  • PARI
    polrootsreal(4*x^4+8*x^3+2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Nov 26 2024

Formula

Equals (sqrt(2+sqrt(5))-1)/2. - Vaclav Kotesovec, Oct 19 2014
Previous Showing 11-20 of 20 results.