cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A350920 a(0) = 5, a(1) = 5, and a(n) = 4*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

5, 5, 11, 35, 125, 461, 1715, 6395, 23861, 89045, 332315, 1240211, 4628525, 17273885, 64467011, 240594155, 897909605, 3351044261, 12506267435, 46674025475, 174189834461, 650085312365, 2426151414995, 9054520347611, 33791929975445, 126113199554165, 470660868241211, 1756530273410675, 6555460225401485, 24465310628195261, 91305782287379555
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350921, A350922, A350923, A350924, A350925, A350926.

Formula

a(n) = 3*A001835(n) + 2. - Hugo Pfoertner, Jan 22 2022
G.f.: (5 - 20*x + 11*x^2)/((1 - x)*(1 - 4*x + x^2)). - Stefano Spezia, Jan 22 2022

A350921 a(0) = 3, a(1) = 3, and a(n) = 6*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

3, 3, 11, 59, 339, 1971, 11483, 66923, 390051, 2273379, 13250219, 77227931, 450117363, 2623476243, 15290740091, 89120964299, 519435045699, 3027489309891, 17645500813643, 102845515571963, 599427592618131, 3493720040136819, 20362892648202779, 118683635849079851, 691738922446276323
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350922, A350923, A350924, A350925, A350926.

Formula

G.f.: (3 - 18*x + 11*x^2)/((1 - x)*(1 - 6*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 2*A001653(n) + 1 = 4*A011900(n-1) - 1 for n >= 1. - Hugo Pfoertner, Jan 22 2022

A350924 a(0) = 1, a(1) = 3, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 3, 43, 681, 10849, 172899, 2755531, 43915593, 699893953, 11154387651, 177770308459, 2833170547689, 45152958454561, 719614164725283, 11468673677149963, 182779164669674121, 2912997961037635969, 46425188211932501379, 739890013429882386091, 11791815026666185676073
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350926.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,16b-a-4}; NestList[nxt,{1,3},20][[All,1]] (* or *) LinearRecurrence[ {17,-17,1},{1,3,43},20] (* Harvey P. Dale, Jan 08 2023 *)
  • Python
    a350924 = [1, 3]
    for k in range(2, 100): a350924.append(16*a350924[k-1]-a350924[k-2]-4)
    print(a350924) # Karl-Heinz Hofmann, Jan 22 2022

Formula

G.f.: (1 - 14*x + 9*x^2)/((1 - x)*(1 - 16*x + x^2)). - Stefano Spezia, Jan 22 2022
7*a(n) = 2 +5*A077412(n) -61*A077412(n-1). - R. J. Mathar, Feb 07 2022

A350925 a(0) = 1, a(1) = 9, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 9, 139, 2211, 35233, 561513, 8948971, 142622019, 2273003329, 36225431241, 577333896523, 9201116913123, 146640536713441, 2337047470501929, 37246118991317419, 593600856390576771, 9460367583257910913, 150772280475735997833, 2402896120028518054411
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350924, A350926.

Programs

  • Mathematica
    LinearRecurrence[{17,-17,1},{1,9,139},20] (* Harvey P. Dale, Feb 09 2025 *)

Formula

G.f.: (1 - 8*x + 3*x^2)/((1 - x)*(1 - 16*x + x^2)). - Stefano Spezia, Jan 22 2022
7*a(n) = 2+5*A077412(n)-19*A077412(n-1). - R. J. Mathar, Feb 07 2022

A350926 a(0) = 1, a(1) = 17, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 17, 386, 8857, 203321, 4667522, 107149681, 2459775137, 56467678466, 1296296829577, 29758359401801, 683145969411842, 15682598937070561, 360016629583211057, 8264699881476783746, 189728080644382815097, 4355481154939327963481, 99986338482960160344962, 2295330303953144359970641
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350925.

Programs

  • Mathematica
    LinearRecurrence[{24,-24,1},{1,17,386},20] (* Harvey P. Dale, Jun 12 2022 *)

Formula

G.f.: (1 - 7*x + 2*x^2)/((1 - x)*(1 - 23*x + x^2)). - Stefano Spezia, Jan 22 2022
21*a(n) = 4+17*A097778(n)-38*A097778(n-1). - R. J. Mathar, Feb 07 2022

A103975 Smaller side in (a,a+1,a+1)-integer triangle with integer area.

Original entry on oeis.org

16, 240, 3360, 46816, 652080, 9082320, 126500416, 1761923520, 24540428880, 341804080816, 4760716702560, 66308229755040, 923554499868016, 12863454768397200, 179164812257692800, 2495443916839302016, 34757050023492535440, 484103256412056194160
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Crossrefs

Corresponding areas are given by A104008.

Programs

  • Mathematica
    a[n_] := 1/3 (-4 + (2 - Sqrt[3])^(1 + 2 n) + (2 + Sqrt[3])^(1 + 2 n)); A103975 = Expand[a /@ Range[1, 25]] (* Terentyev Oleg, Nov 12 2009 *)
    LinearRecurrence[{15,-15,1},{16,240,3360},30] (* Harvey P. Dale, Apr 25 2012 *)

Formula

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) - Max Alekseyev, May 31 2007
a(n) = 2*A120892(2*n+1) - Max Alekseyev, May 31 2007
a(n) = (1/3)*((2 - sqrt(3))^(1 + 2*n) + (2 + sqrt(3))^(1 + 2*n) - 4). [Terentyev Oleg, Nov 12 2009]
a(n) = (4/3)*(A001570(n+1)-1).
G.f.: -16*x / ((x-1)*(x^2-14*x+1)). - Colin Barker, Apr 09 2013

Extensions

More terms from Robert G. Wilson v, Mar 24 2005
More terms from Colin Barker, Apr 09 2013

A103772 Larger of two sides in a (k,k,k-1)-integer-sided triangle with integer area.

Original entry on oeis.org

1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Comments

Corresponding areas are 0, 120, 25080, 4890480, 949077360, 184120982760, ...
Values of (x^2 + y^2)/2, where the pair (x, y) satisfies x^2 - 3*y^2 = -2, i.e., a(n) = {(A001834(n))^2 + (A001835(n))^2}/2 = {(A001834(n))^2 + A046184(n)}/2. - Lekraj Beedassy, Jul 13 2006
The heights of these triangles are given in A028230. (A028230(n), A045899(n), A103772(n)) forms a primitive Pythagorean triple.
Shortest side of (k,k+2,k+3) triangle such that median to longest side is integral. Sequence of such medians is A028230. - James R. Buddenhagen, Nov 22 2013
Numbers n such that (n+1)*(3n-1) is a square. - James R. Buddenhagen, Nov 22 2013

Crossrefs

Programs

  • Magma
    I:=[1,17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *)
    LinearRecurrence[{15,-15,1},{1,17,241},20] (* Harvey P. Dale, Jan 02 2016 *)
    RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016
    

Formula

a(n) = (4*A001570(n+1) - 1)/3, n > 0. - Ralf Stephan, May 20 2007
a(n) = A052530(n-1)*A052530(n) + 1. - Johannes Boot, May 21 2011
G.f.: x*(1+x)^2/((1-x)*(1-14*x+x^2)). - Colin Barker, Apr 09 2012
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); a(1)=1, a(2)=17, a(3)=241. - Harvey P. Dale, Jan 02 2016
a(n) = (-1+(7-4*sqrt(3))^n*(2+sqrt(3))-(-2+sqrt(3))*(7+4*sqrt(3))^n)/3. - Colin Barker, Mar 05 2016
a(n) = 14*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 05 2016
a(n) = A001353(n)^2 + A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020

Extensions

More terms from Robert G. Wilson v, Mar 24 2005

A120893 a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3); a(0)=1, a(1)=1, a(2)=5.

Original entry on oeis.org

1, 1, 5, 17, 65, 241, 901, 3361, 12545, 46817, 174725, 652081, 2433601, 9082321, 33895685, 126500417, 472105985, 1761923521, 6575588101, 24540428881, 91586127425, 341804080817, 1275630195845, 4760716702561, 17767236614401
Offset: 0

Views

Author

Lekraj Beedassy, Jul 14 2006

Keywords

Comments

For n>1, hypotenuse of primitive Pythagorean triangles having an angle nearing Pi/3 for larger values of sides. Complete triple (X,Y,Z),XA120892(n),Y=A001353(n),Z=a(n) with recurrence relations X(i+1)=2*{a(i)-(-1)^i}-X(i-1) ; Y(i+1)=2*T(i)-T(i-1)-(-1)^i, where T(i)=Y(i)+a(i)] a(n)=2*A120892(n)-(-1)^n.

Programs

  • Magma
    [Floor(((-1)^n+(2-Sqrt(3))^n+(2+Sqrt(3))^n)/3): n in [0..40]]; // Vincenzo Librandi, Jul 09 2012
  • Maple
    a[0]:=1: a[1]:=1: a[2]:=5: for n from 3 to 40 do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3] od: seq(a[n],n=0..30); # Emeric Deutsch, Jul 24 2006
  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],3Last[#]+3#[[2]]- First[#]}]&, {1,1,5},25]][[1]] (* or *)
    CoefficientList[Series[(1-2 x-x^2)/(1-3 x-3 x^2+x^3),{x,0,25}],x]  (* Harvey P. Dale, Mar 27 2011 *)

Formula

Union of A103772 and A103974. a(n)=2*{2*a(n-1) + (-1)^n} - a(n-2) ; a(0)=1,a(1)=1.
a(n) = [(-1)^n+(2-sqrt(3))^n+(2+sqrt(3))^n]/3. - Emeric Deutsch, Jul 24 2006
O.g.f: -(-1+2*x+x^2)/((1+x)*(x^2-4*x+1)). - R. J. Mathar, Dec 02 2007
a(n)+a(n+1) = A003699(n+1), n>0. - R. J. Mathar, Oct 15 2013

Extensions

More terms from Emeric Deutsch, Jul 24 2006

A227418 Array A(n,k) with all numbers m such that 3*m^2 +- 3^k is a square and their corresponding square roots, read by downward antidiagonals.

Original entry on oeis.org

0, 1, 1, 0, 2, 4, 3, 3, 7, 15, 0, 6, 12, 26, 56, 9, 9, 21, 45, 97, 209, 0, 18, 36, 78, 168, 362, 780, 27, 27, 63, 135, 291, 627, 1351, 2911, 0, 54, 108, 234, 504, 1086, 2340, 5042, 10864, 81, 81, 189, 405, 873, 1881, 4053, 8733, 18817, 40545
Offset: 0

Views

Author

Richard R. Forberg, Sep 02 2013

Keywords

Comments

Array is analogous to A228405 in goal and structure, with key differences.
Left column is A001353. Top row (not in OEIS) interleaves 0 with the powers of 3, as: 0, 1, 0, 3, 0, 9, 0, 27, 0, 81.
Either or both may be used as initializing values. See Formula section.
The left column is the second binomial transform of the top row. The intermediate transform sequence is A002605, not present in this array.
The columns of the array hold all values, in sequential order, of numbers m such that 3*m^2 + 3^k or 3*m^2 - 3^k are squares, and their corresponding square roots in the next column, which then form the "next round" of m values for column k+1.
For example: A(n,0) are numbers such that 3*m^2 + 1 are squares, the integer square roots of each are in A(n,1), which are then numbers m such that 3*m^2 - 3 are squares, with those square roots in A(n,2), etc. The sign alternates for each increment of k, etc. No integer square roots exist for the opposite sign in a given column, regardless of n.
Also, A(n,1) are values of m such that floor(m^2/3) is square, with the corresponding square roots given by A(n,0).
A(n,k)/A(n,k-2) = 3; A(n,k)/A(n,k-1) converges to sqrt(3) for large n.
A(n,k)/A(n-1,k) converges to 2 + sqrt(3) for large n.
Several ways of combining the first few columns give OEIS sequences:
A(n,0) + A(n,1) = A001835; A(n,1) + A(n,2)= A001834; A(n,2) + A(n,3) = A082841;
A(n,0)*A(n,1)/2 = A007655(n); A(n+2,0)*A(n+1,1) = A001922(n);
A(n,0)*A(n+1,1) = A001921(n); A(n,0)^2 + A(n,1)^2 = A103974(n);
A(n,1)^2 - A(n,0)^2 = A011922(n); (A(n+2,0)^2 + A(n+1,1)^2)/2 = A122770(n) = 2*A011916(n).
The main diagonal (without initial 0) = 2*A090018. The first subdiagonal = abs(A099842). First superdiagonal = A141041.
A001353 (in left column) are the only initializing set of numbers where the recursive square root equation (see below) produces exclusively integer values, for all iterations of k. For any other initial values only even iterations (at k = 2, 4, ...) produce integers.

Examples

			The array, A(n, k), begins as:
    0,    1,    0,    3,    0,     9,     0,    27, ... see A000244;
    1,    2,    3,    6,    9,    18,    27,    54, ... A038754;
    4,    7,   12,   21,   36,    63,   108,   189, ... A228879;
   15,   26,   45,   78,  135,   234,   405,   702, ...
   56,   97,  168,  291,  504,   873,  1512,  2619, ...
  209,  362,  627, 1086, 1881,  3258,  5643,  9774, ...
  780, 1351, 2340, 4053, 7020, 12159, 21060, 36477, ...
Antidiagonal triangle, T(n, k), begins as:
   0;
   1,  1;
   0,  2,   4;
   3,  3,   7,  15;
   0,  6,  12,  26,  56;
   9,  9,  21,  45,  97,  209;
   0, 18,  36,  78, 168,  362,  780;
  27, 27,  63, 135, 291,  627, 1351, 2911;
   0, 54, 108, 234, 504, 1086, 2340, 5042, 10864;
  81, 81, 189, 405, 873, 1881, 4053, 8733, 18817, 40545;
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if k lt 0 then return 0;
      elif n eq 0 then return Round((1/2)*(1-(-1)^k)*3^((k-1)/2));
      elif k eq 0 then return Evaluate(ChebyshevSecond(n), 2);
      else return 2*A(n, k-1) - A(n-1, k-1);
      end if; return A;
    end function;
    A227418:= func< n,k | A(k, n-k) >;
    [A227418(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Oct 09 2022
    
  • Mathematica
    A[n_, k_]:= If[k<0, 0, If[k==0, ChebyshevU[n-1, 2], 2*A[n, k-1] - A[n-1, k-1]]];
    T[n_, k_]:= A[k, n-k];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 09 2022 *)
  • SageMath
    def A(n,k):
        if (k<0): return 0
        elif (k==0): return chebyshev_U(n-1,2)
        else: return 2*A(n, k-1) - A(n-1, k-1)
    def A227418(n, k): return A(k, n-k)
    flatten([[A227418(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 09 2022

Formula

If using the left column and top row to initialize, then: A(n,k) = 2*A(n, k-1) - A(n-1, k-1).
If using only the top row to initialize, then: A(n,k) = 4*A(n-1,k) - A(n-2,k).
If using the left column to initialize, then: A(n,k) = sqrt(3*A(n,k-1) + (-3)^(k-1)), for all n, k > 0.
Other internal relationships that apply are: A(2*n-1, 2*k) = A(n,k)^2 - A(n-1,k)^2;
A(n+1,k) * A(n,k+1) - A(n+1, k+1) * A(n,k) = (-3)^k, for all n, k > 0.
A(n, 0) = A001353(n).
A(n, 1) = A001075(n).
A(n, 2) = A005320(n).
A(n, 3) = A151961(n).
A(1, k) = A038754(k).
A(n, n) = 2*A090018(n), for n > 0 (main diagonal).
A(n, n+1) = A141041(n-1) (superdiagonal).
A(n+1, n) = abs(A099842(n)) (subdiagonal).
From G. C. Greubel, Oct 09 2022: (Start)
T(n, 0) = (1/2)*(1-(-1)^n)*3^((n-1)/2).
T(n, 1) = A038754(n-1).
T(n, 2) = A228879(n-2).
T(2*n-1, n-1) = A141041(n-1).
T(2*n, n) = 2*A090018(n-1), n > 0.
T(n, n-4) = 3*A005320(n-4).
T(n, n-3) = 3*A001075(n-3).
T(n, n-2) = 3*A001353(n-2).
T(n, n-1) = A001075(n-1).
T(n, n) = A001353(n).
Sum_{k=0..n-1} T(n, k) = A084156(n).
Sum_{k=0..n} T(n, k) = A084156(n) + A001353(n). (End)

Extensions

Offset corrected by G. C. Greubel, Oct 09 2022

A381336 a(n) is the smallest k > 0 for which a nondegenerate integer-sided triangle (k, k + n, c >= k + n) with an integer area exists.

Original entry on oeis.org

3, 6, 9, 12, 12, 18, 5, 7, 4, 24, 14, 36, 15, 10, 36, 14, 7, 8, 6, 21, 8, 3, 12, 5, 10, 15, 12, 20, 46, 35, 9, 28, 20, 14, 25, 16, 15, 12, 22, 21, 19, 16, 12, 6, 20, 5, 4, 10, 11, 20, 21, 30, 96, 24, 13, 9, 18, 7, 25, 63, 21, 18, 22, 9, 35, 9, 25, 21, 36, 17, 13
Offset: 1

Views

Author

Felix Huber, Mar 16 2025

Keywords

Comments

Longest sides c are in A381337.

Examples

			a(5) = 12 because the nondegenerate integer-sided triangle (12, 12 + 5, 25 >= 12 + 5) has an integer area (90), and there is no smaller k > 0 than 12 that satisfies this condition.
		

Crossrefs

Programs

  • Maple
    A381336:=proc(n)
        local k,c,s;
        for k do
            for c from k+n to 2*k+n-1 do
                s:=(n+2*k+c)/2;
                if issqr(s*(s-k)*(s-k-n)*(s-c)) then
                    return k
                fi
            od
        od;
    end proc;
    seq(A381336(n),n=1..71);
Previous Showing 11-20 of 20 results.