cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A136215 Triangle T, read by rows, where T(n,k) = A007559(n-k)*C(n,k) where A007559 equals the triple factorials in column 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 28, 12, 3, 1, 280, 112, 24, 4, 1, 3640, 1400, 280, 40, 5, 1, 58240, 21840, 4200, 560, 60, 6, 1, 1106560, 407680, 76440, 9800, 980, 84, 7, 1, 24344320, 8852480, 1630720, 203840, 19600, 1568, 112, 8, 1, 608608000, 219098880, 39836160
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Comments

Comments from Peter Bala, Jul 10 2008: (Start) This array is the particular case P(1,3) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below
n\k|0....................1...............2.........3.....4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
See A094587 for some general properties of these arrays.
Other cases recorded in the database include: P(1,0) = Pascal's triangle A007318, P(1,1) = A094587, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159 and P(2,3) = A136216. (End)
The generalized Pascal matrix that Bala refers to is itself a special case of application of the formalism of A133314 to fundamental matrices derived from infinitesimal generators described in A133314, of which the fundamental Pascal (A007318), unsigned Lah (A105278) and associated Laguerre (A135278) matrices are special examples. The formalism gives, among other relations, the inverse of T as TI(n,k) = b(n-k)*C(n,k) where the sequence b is given by the list partition transform (A133314) of A007559; i.e., b = LPT(A007559) = (1,-A008544)= (1,-1,-2,-10,-80,...). The formalism of A132382 may also be applied with the double factorial A001147 replaced by the triple factorial A007559 (see also A133480). - Tom Copeland, Aug 18 2008
From Peter Bala, Aug 29 2013: (Start)
Exponential Riordan array [1/(1 - 3*y)^(1/3), y]. The row polynomials R(n,x) thus form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = sum {k = 0..n} binomial(n,k)*y^(n-k)*R(k,x).
Define a polynomial sequence P(n,x) of binomial type by setting P(n,x) = product {k = 0..n-1} (x + 3*k) with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x).
For example, row 3 is (28, 12, 3, 1) so P(3,x + 1) = (x + 1)*(x + 4)*(x + 7) = 28 + 12*x + 3*x*(x + 3) + x*(x + 3)*(x + 6). (End)

Examples

			Column k of T = column 0 of U^(k+1), while
column k of U = column 0 of T^(3k+1) where U = A136214 and
column k of V = column 0 of T^(3k+2) where V = A112333.
This triangle T begins:
        1;
        1,      1;
        4,      2,     1;
       28,     12,     3,    1;
      280,    112,    24,    4,   1;
     3640,   1400,   280,   40,   5,  1;
    58240,  21840,  4200,  560,  60,  6, 1;
  1106560, 407680, 76440, 9800, 980, 84, 7, 1; ...
Triangle U = A136214 begins:
     1;
     1,    1;
     4,    4,   1;
    28,   28,   7,   1;
   280,  280,  70,  10,  1;
  3640, 3640, 910, 130, 13, 1; ...
with triple factorials A007559 in column 0.
Triangle V = A112333 begins:
      1;
      2,    1;
     10,    5,    1;
     80,   40,    8,   1;
    880,  440,   88,  11,  1;
  12320, 6160, 1232, 154, 14, 1; ...
with triple factorials A008544 in column 0.
		

Crossrefs

Cf. A136216 (matrix square); A007559, A008544; A136212, A136213.
Cf. A094587.

Programs

  • Mathematica
    T[n_, k_]:= Binomial[n, k]*If[n - k == 0, 1, Product[3*j + 1, {j, 0, n - k - 1}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 10 2018 *)
  • PARI
    T(n,k)=binomial(n,k)*if(n-k==0,1,prod(j=0,n-k-1,3*j+1))

Formula

Column k of T = column 0 of U^(k+1) (matrix power) for k>=0 where U = A136214. Matrix square equals A136216, where A136216(n,k) = A008544(n-k)*C(n,k) where A008544 are also triple factorials.
From Peter Bala, Jul 10 2008: (Start)
T(n,k) = (3*n-3*k-2)*T(n-1,k) + T(n-1,k-1).
E.g.f. exp(x*y)/(1-3*y)^(1/3) = 1 + (1+x)*y + (4+2*x+x^2)*y^2/2! + ... . (End)

A180047 Coefficient triangle of the numerators of the (n-th convergents to) the continued fraction w/(1 + w/(2 + w/(3 + w/(...)))).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1, 0, 479001600
Offset: 0

Views

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the binomial formula needs formal proof. This c.f. converges to A052119 = 0.697774657964.. = BesselI(1,2)/BesselI(0,2) for w = 1.

Examples

			Triangle starts:
  0;
  0,   1;
  0,   2;
  0,   6,   1;
  0,  24,   6;
  0, 120,  36,  1;
  0, 720, 240, 12;
The numerator of w/(1+w/(2+w/(3+w/(4+w/5)))) equals 120*w + 36*w^2 + w^3.
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Numerator[Together[Fold[w/(#2+#1) &,Infinity,Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* or equivalently *) Table[(n-m+1)!/m! *Binomial[n-m,m-1], {n,0,16}, {m,0,Floor[n/2+1/2]}]

Formula

T(n,m) = (n-m+1)!/m!*binomial(n-m, m-1) for n >= 0, 0 <= m <= (n+1)/2.

A086915 Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).

Original entry on oeis.org

2, 4, 4, 12, 24, 8, 48, 144, 96, 16, 240, 960, 960, 320, 32, 1440, 7200, 9600, 4800, 960, 64, 10080, 60480, 100800, 67200, 20160, 2688, 128, 80640, 564480, 1128960, 940800, 376320, 75264, 7168, 256, 725760, 5806080, 13547520, 13547520, 6773760, 1806336
Offset: 1

Views

Author

Vladeta Jovovic, Sep 24 2003

Keywords

Comments

Also the Bell transform of A052849(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
The coefficients of n! * L_n(-2*x,-1), where n! * L_n(-x,-1) are the normalized, unsigned Laguerre polynomials of order -1 of A105278, also known as the Lah polynomials, which are also a shifted version of n! * L_n(-x,1). Cf. p. 8 of the Gross and Matytsin link. - Tom Copeland, Sep 30 2016

Examples

			Triangle begins:
   2;
   4,   4;
  12,  24,  8;
  48, 144, 96, 16;
  ...
		

Crossrefs

Cf. A008297, A052897 (row sums), A059110, A079621, A105278.

Programs

  • Magma
    [Factorial(n)*Binomial(n-1,k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // G. C. Greubel, May 23 2018
  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ...) as column 0.
    BellMatrix(n -> 2*(n+1)!, 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    Flatten[Table[n!/k! Binomial[n-1,k-1]2^k,{n,10},{k,n}]] (* Harvey P. Dale, May 25 2011 *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[2*(#+1)!&, rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • PARI
    for(n=1,10, for(k=1, n, print1(n!/k!*binomial(n-1,k-1)*2^k, ", "))) \\ G. C. Greubel, May 23 2018
    

Formula

E.g.f.: exp(2*x*y/(1-x)).
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (-2)^k * A008297(n, k) = 2^k * A105278(n, k).
Sum_{k=1..n} T(n, k) = 2 * n! * Hypergeometric1F1([1-n], [2], -2) = 2*(n-1)! * LaguerreL(n-1, 1, -2) = A253286(n, 2). (End)

A247500 Triangle read by rows: T(n, k) = n!*binomial(n + 1, k)/(k + 1)!, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 12, 6, 1, 24, 60, 40, 10, 1, 120, 360, 300, 100, 15, 1, 720, 2520, 2520, 1050, 210, 21, 1, 5040, 20160, 23520, 11760, 2940, 392, 28, 1, 40320, 181440, 241920, 141120, 42336, 7056, 672, 36, 1, 362880, 1814400, 2721600, 1814400, 635040, 127008, 15120, 1080, 45, 1
Offset: 0

Views

Author

Peter Luschny, Oct 17 2014

Keywords

Comments

An alternative definition would have been: (n-k)!*N(n,k) where N(n,k) are the little Narayana numbers A090181(n,k). This adds a first column (1,0,0,...) to the triangle and amounts to (Gamma(n)*Gamma(n+1))/(Gamma(k)*Gamma(k+1)*Gamma(n-k+2)). - Peter Luschny, Jun 18 2015
From Peter Bala, Sep 03 2023: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n+1)!. Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Let B(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). A generating function for the triangle is E(y)*B(x*y) = 1 + (1 + x)*y/(1!*2!) + (2 + 3*x + x^2)*y^2/(2!*3!) + (6 + 12*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*B(x*y).
The n-th power of this array has a generating function E(y)^n*B(x*y). In particular, the matrix inverse has a generating function B(x*y)/E(y). (End)

Examples

			Triangle begins:
                      1;
                   1,    1;
                2,    3,    1;
             6,   12,    6,    1;
         24,   60,   40,   10,    1;
     120,  360,  300,  100,   15,    1;
  720, 2520, 2520, 1050,  210,   21,    1;
		

Crossrefs

Cf. A247499 (row sums), A008297.
Cf. A204515 (central terms), A105278, A004736.

Programs

  • Haskell
    a247500 n k = a247500_tabl !! n !! k
    a247500_row n = a247500_tabl !! n
    a247500_tabl = zipWith (zipWith div) a105278_tabl a004736_tabl
    -- Reinhard Zumkeller, Oct 19 2014
  • Magma
    /* triangle */ [[Factorial(n)/Factorial(k) * Binomial(n+2, k+1) /(n+2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 18 2014
    
  • Maple
    T := (n,k) -> ((k+1)*(n+1)*GAMMA(n+1)^2)/(GAMMA(k+2)^2*GAMMA(n-k+2));
    A247500 := (n, k) -> (n!/(k+1)!)*binomial(n + 1, k):
  • Mathematica
    Table[((k + 1) (n + 1) Gamma[n + 1]^2)/(Gamma[k + 2]^2*
    Gamma[n - k + 2]), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 19 2015 *)

Formula

T(n, k) = ((k+1)*(n+1)*Gamma(n+1)^2)/(Gamma(k+2)^2 *Gamma(n-k+2)). (original name)
T(n, k) = (n!/k!)*C(n+2, k+1)/(n+2).
T(n, 0) = A000142(n).
T(n, n-1) = A000217(n).
T(n+1, 1) = A001710(n+2).
Sum_{k=0..n} T(n, k) = A247499(n).
L(n+1, k+1) = T(n-1, k)*P(n) for n>=1 and 0<=k<=n; here L(n,k) denote the unsigned Lah numbers and P(n) the pronic numbers. - Peter Luschny, Oct 18 2014
T(n,k) = A105278(n+1,k+1) / (n+1-k), k=0..n. - Reinhard Zumkeller, Oct 19 2014
From Peter Bala, May 24 2023: (Start)
Triangle equals A164652 * A008277 (assuming the same offset for the three triangles).
This is equivalent to the Stirling number identity Sum_{i = 0..n} (n+1)!/(i+1)!* binomial(n,i)*Stirling1(i+1,k) = (-1)^(n+k+1)*Stirling1(n+1,k) for n, k >= 0. (End)

Extensions

Name updated by Peter Luschny, Jan 09 2022

A145118 Denominator polynomials for continued fraction generating function for n!.

Original entry on oeis.org

1, 1, 1, -1, 1, -2, 1, -4, 2, 1, -6, 6, 1, -9, 18, -6, 1, -12, 36, -24, 1, -16, 72, -96, 24, 1, -20, 120, -240, 120, 1, -25, 200, -600, 600, -120, 1, -30, 300, -1200, 1800, -720, 1, -36, 450, -2400, 5400, -4320, 720, 1, -42, 630, -4200, 12600, -15120
Offset: 0

Views

Author

Paul Barry, Oct 02 2008

Keywords

Comments

Row sums are A056920. T(n,1) gives quarter squares A002620. T(n,2) appears to coincide with 2*A000241(n+1).

Examples

			Triangle begins:
1;
1;
1,  -1;
1,  -2;
1,  -4,   2;
1,  -6,   6;
1,  -9,  18,    -6;
1, -12,  36,   -24;
1, -16,  72,   -96,   24;
1, -20, 120,  -240,  120;
1, -25, 200,  -600,  600,  -120;
1, -30, 300, -1200, 1800,  -720;
1, -36, 450, -2400, 5400, -4320, 720;
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> (-1)^k* binomial(iquo(n+1, 2),k) *binomial(iquo(n, 2), k)*k!:
    seq (seq (T(n, k), k=0..iquo(n, 2)), n=0..16);  # Alois P. Heinz, Dec 04 2012

Formula

T(n,k) = (-1)^k C(floor((n+1)/2),k) * C(floor(n/2),k)*k!.

A169653 Triangle T(n,k) = A008297(n,k) + A008297(n,n-k+1), read by rows.

Original entry on oeis.org

-2, 3, 3, -7, -12, -7, 25, 48, 48, 25, -121, -260, -240, -260, -121, 721, 1830, 1500, 1500, 1830, 721, -5041, -15162, -13230, -8400, -13230, -15162, -5041, 40321, 141176, 142296, 70560, 70560, 142296, 141176, 40321, -362881, -1451592, -1695456, -874944, -423360, -874944, -1695456, -1451592, -362881
Offset: 1

Views

Author

Roger L. Bagula, Apr 05 2010

Keywords

Examples

			Triangle begins as:
     -2;
      3,      3;
     -7,    -12,     -7;
     25,     48,     48,    25;
   -121,   -260,   -240,  -260,   -121;
    721,   1830,   1500,  1500,   1830,    721;
  -5041, -15162, -13230, -8400, -13230, -15162,  -5041;
  40321, 141176, 142296, 70560,  70560, 142296, 141176, 40321;
		

Crossrefs

Programs

  • Magma
    A001263:= func< n,k | Binomial(n-1, k-1)*Binomial(n,k-1)/k >;
    A169653:= func< n,k | (-1)^n*A001263(n, k)*(Factorial(k) + Factorial(n-k+1)) >;
    [A169653(n, k): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
  • Mathematica
    t[n_, m_] = (-1)^n*(n!/m!)*Binomial[n-1, m-1];
    T[n_, m_] = t[n, m] + t[n, n-m+1];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Feb 23 2021 *)
  • Sage
    def A001263(n, k): return binomial(n-1, k-1)*binomial(n,k-1)/k
    def A169653(n, k): return (-1)^n*A001263(n, k)*(factorial(k) + factorial(n-k+1))
    flatten([[A169653(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
    

Formula

T(n, k) = t(n, k) + t(n, n-k+1), where t(n, k) = (-1)^n*(n!/k!)*binomial(n-1, k-1).
T(n, k) = A008297(n,k) + A008297(n,n-k+1).
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (-1)^n * (A105278(n, k) + A105278(n, n-k+1)).
T(n, k) = (-1)^n * ( k! + (n-k+1)! ) * A001263(n, k).
Sum_{k=1..n} T(n, k) = 2 * (-1)^n * A000262(n). (End)

Extensions

Edited by G. C. Greubel, Feb 23 2021

A268434 Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

0

Examples

			[1]
[0,        1]
[0,        2,         1]
[0,       10,        10,        1]
[0,      100,       140,       28,        1]
[0,     1700,      2900,      840,       60,      1]
[0,    44200,     85800,    31460,     3300,    110,     1]
[0,  1635400,   3476200,  1501500,   203060,  10010,   182,   1]
		

Crossrefs

Cf. A038207 (order 0), A111596 (order 1), A269946 (order 3).

Programs

  • Maple
    T := proc(n,k) option remember;
    if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
    T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
    seq(seq(T(n,k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
    (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
  • Mathematica
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
  • Sage
    #cached_function
    def T(n, k):
        if n==k: return 1
        if k<0 or k>n: return 0
        return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
    for n in range(8): print([T(n, k) for k in (0..n)])
    # Alternatively with the function PtransMatrix (cf. A269941):
    PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))

Formula

T(n,k) = (-1)^k*((2*n)!/(2*k)!)*P[n,k](s(n)) where P is the P-transform and s(n) = ((n-1)^2+1)/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n,k) = Sum_{j=k..n} A269944(n,j)*A269945(j,k).
T(n,1) = Product_{k=1..n} (k-1)^2+1 for n>=1 (cf. A101686).
T(n,n-1) = (n-1)*n*(2*n-1)/3 for n>=1 (cf. A006331).
Row sums: A269938.

A130560 Numerators of Sheffer a-sequence for Jabotinsky type triangle S2(3):=A035342.

Original entry on oeis.org

1, 3, 1, -3, 3, -15, 45, -315, 315, -2835, 14175, -155925, 467775, -6081075, 42567525, -638512875, 638512875, -10854718875, 97692469875, -1856156927625, 9280784638125, -194896477400625, 2143861251406875, -49308808782358125, 147926426347074375, -3698160658676859375
Offset: 0

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

This rational a-sequence leads to the following recurrence for triangle S2(3):=A035342: A035342(n,m)=(n/m)*sum(binomial(m-1+j,m-1)*a(j)*A035342(n-1,m-1+j),j=0..n-m), n>=m>=1.
For the notion of the a-sequence for a Sheffer matrix see the W. Lang link under A006232. Here the a-sequence is called r(n) because it is a sequence of rationals.
Denominators are numerators of (2^n)/n!, see A001316 and the M. Bouayoun comment.
For the notion of the a-sequence for a Sheffer matrix see the W. Lang link under A006233. Here the a-sequence is called r(n) because it is a sequence of rationals.

Examples

			Rationals: [1, 3/2, 1/2, -3/4, 3/2, -15/4, 45/4, -315/8, 315/2, -2835/4,...].
		

Crossrefs

Cf. A006232/A006233 (a-sequence for S2(1):= Stirling2 = A048993 triangle).
a-sequence for S2(2):=A105278 is [1, 1, 0, 0, 0, ...].

Formula

E.g.f.: (1+x)^2/(1+x/2).
a(n) = numerator(r(n)), n>=0, with r(0)=1, r(1)=3/2, r(n)=((-1)^n)*n!/2^n, n>=2.

A137478 A triangle of recursive Fibonacci Lah numbers: f(n) = Fibonacci(n)*f(n - 1), L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 6, 18, 9, 1, 30, 120, 90, 20, 1, 240, 1200, 1200, 400, 40, 1, 3120, 18720, 23400, 10400, 1560, 78, 1, 65520, 458640, 687960, 382200, 76440, 5733, 147, 1, 2227680, 17821440, 31187520, 20791680, 5197920, 519792, 19992, 272, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 22 2008

Keywords

Comments

Row sums are: {1, 2, 7, 34, 261, 3081, 57279, 1676641, 77766297, 5728225636, 671925730146, ...}.

Examples

			Triangle begins as:
      1;
      1,      1;
      2,      4,      1;
      6,     18,      9,      1;
     30,    120,     90,     20,     1;
    240,   1200,   1200,    400,    40,    1;
   3120,  18720,  23400,  10400,  1560,   78,   1;
  65520, 458640, 687960, 382200, 76440, 5733, 147, 1;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page86

Crossrefs

Programs

  • Magma
    f:= func< n | (&*[Fibonacci(j): j in [1..n]]) >;
    [[Binomial(n-1,k-1)*(f(n)/f(k)): k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    f[n_]:= Product[Fibonacci[j], {j, 1, n}]; Table[Binomial[n-1, k-1]* f[n]/f[k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, May 15 2019 *)
  • PARI
    {f(n) = prod(j=1,n, fibonacci(j))};
    {T(n,k) = binomial(n-1, k-1)*(f(n)/f(k))};
    for(n=1, 12, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 15 2019
    
  • Sage
    def f(n): return product(fibonacci(j) for j in (1..n))
    [[binomial(n-1,k-1)*(f(n)/f(k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 15 2019

Formula

With f(n) = Fibonacci(n)*f(n-1) then the triangle is formed by L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).
With f(n) = Product_{j=1..n} Fibonacci(j) then the triangle is formed by T(n, k) = binomial(n-1, k-1)*(f(n)/f(k)). - G. C. Greubel, May 15 2019

Extensions

Edited by G. C. Greubel, May 15 2019

A169654 Triangle T(n, k) = A169643(n, k) - A169653(n, 1) + 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, -4, 1, 1, 24, 24, 1, 1, -138, -118, -138, 1, 1, 1110, 780, 780, 1110, 1, 1, -10120, -8188, -3358, -8188, -10120, 1, 1, 100856, 101976, 30240, 30240, 101976, 100856, 1, 1, -1088710, -1332574, -512062, -60478, -512062, -1332574, -1088710, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 05 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,        1;
  1,       -4,        1;
  1,       24,       24,       1;
  1,     -138,     -118,    -138,      1;
  1,     1110,      780,     780,   1110,       1;
  1,   -10120,    -8188,   -3358,  -8188,  -10120,        1;
  1,   100856,   101976,   30240,  30240,  101976,   100856,        1;
  1, -1088710, -1332574, -512062, -60478, -512062, -1332574, -1088710,        1;
  1, 12700890, 18147240, 9132480, 816480,  816480,  9132480, 18147240, 12700890, 1;
		

Crossrefs

Programs

  • Magma
    A001263:= func< n,k | Binomial(n-1, k-1)*Binomial(n,k-1)/k >;
    A169653:= func< n,k | (-1)^n*A001263(n, k)*(Factorial(k) + Factorial(n-k+1)) >;
    A169654:= func< n,k | A169653(n, k) - A169653(n, 1) + 1 >;
    [A169654(n, k): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
  • Mathematica
    t[n_, m_] = (-1)^n*(n!/m!)*Binomial[n-1, m-1];
    T[n_, m_] = t[n, m] + t[n, n-m+1] - (-1)^n*(n! + 1) + 1;
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Feb 23 2021 *)
  • Sage
    def A001263(n, k): return binomial(n-1, k-1)*binomial(n,k-1)/k
    def A169653(n, k): return (-1)^n*A001263(n, k)*(factorial(k) + factorial(n-k+1))
    def A169654(n, k): return A169653(n, k) - A169653(n, 1) + 1
    flatten([[A169654(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
    

Formula

T(n, k) = t(n, k) + t(n, n-k+1) - t(n, 1) - t(n, n) + 1, where t(n, k) = (-1)^n*(n!/k!)*binomial(n-1, k-1).
T(n, k) = A008297(n,k) + A008297(n,n-k+1) - (A008297(n,1) + A008297(n,n)) + 1.
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = A169653(n, k) - A169653(n, 1) + 1
T(n, k) = A169653(n, k) - (-1)^n * (n! + 1) + 1.
T(n, k) = (-1)^n * (A105278(n, k) + A105278(n, n-k+1) - (n! + 1) + (-1)^n).
Sum_{k=1..n} T(n, k) = (-1)^n *(2 * A000262(n) - n*(n! + 1) + (-1)^n * n). (End)

Extensions

Edited by G. C. Greubel, Feb 23 2021
Previous Showing 31-40 of 43 results. Next