A136215
Triangle T, read by rows, where T(n,k) = A007559(n-k)*C(n,k) where A007559 equals the triple factorials in column 0.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 28, 12, 3, 1, 280, 112, 24, 4, 1, 3640, 1400, 280, 40, 5, 1, 58240, 21840, 4200, 560, 60, 6, 1, 1106560, 407680, 76440, 9800, 980, 84, 7, 1, 24344320, 8852480, 1630720, 203840, 19600, 1568, 112, 8, 1, 608608000, 219098880, 39836160
Offset: 0
Column k of T = column 0 of U^(k+1), while
column k of U = column 0 of T^(3k+1) where U = A136214 and
column k of V = column 0 of T^(3k+2) where V = A112333.
This triangle T begins:
1;
1, 1;
4, 2, 1;
28, 12, 3, 1;
280, 112, 24, 4, 1;
3640, 1400, 280, 40, 5, 1;
58240, 21840, 4200, 560, 60, 6, 1;
1106560, 407680, 76440, 9800, 980, 84, 7, 1; ...
Triangle U = A136214 begins:
1;
1, 1;
4, 4, 1;
28, 28, 7, 1;
280, 280, 70, 10, 1;
3640, 3640, 910, 130, 13, 1; ...
with triple factorials A007559 in column 0.
Triangle V = A112333 begins:
1;
2, 1;
10, 5, 1;
80, 40, 8, 1;
880, 440, 88, 11, 1;
12320, 6160, 1232, 154, 14, 1; ...
with triple factorials A008544 in column 0.
-
T[n_, k_]:= Binomial[n, k]*If[n - k == 0, 1, Product[3*j + 1, {j, 0, n - k - 1}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 10 2018 *)
-
T(n,k)=binomial(n,k)*if(n-k==0,1,prod(j=0,n-k-1,3*j+1))
A180047
Coefficient triangle of the numerators of the (n-th convergents to) the continued fraction w/(1 + w/(2 + w/(3 + w/(...)))).
Original entry on oeis.org
0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1, 0, 479001600
Offset: 0
Triangle starts:
0;
0, 1;
0, 2;
0, 6, 1;
0, 24, 6;
0, 120, 36, 1;
0, 720, 240, 12;
The numerator of w/(1+w/(2+w/(3+w/(4+w/5)))) equals 120*w + 36*w^2 + w^3.
-
Table[CoefficientList[Numerator[Together[Fold[w/(#2+#1) &,Infinity,Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* or equivalently *) Table[(n-m+1)!/m! *Binomial[n-m,m-1], {n,0,16}, {m,0,Floor[n/2+1/2]}]
A086915
Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).
Original entry on oeis.org
2, 4, 4, 12, 24, 8, 48, 144, 96, 16, 240, 960, 960, 320, 32, 1440, 7200, 9600, 4800, 960, 64, 10080, 60480, 100800, 67200, 20160, 2688, 128, 80640, 564480, 1128960, 940800, 376320, 75264, 7168, 256, 725760, 5806080, 13547520, 13547520, 6773760, 1806336
Offset: 1
Triangle begins:
2;
4, 4;
12, 24, 8;
48, 144, 96, 16;
...
-
[Factorial(n)*Binomial(n-1,k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // G. C. Greubel, May 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> 2*(n+1)!, 9); # Peter Luschny, Jan 26 2016
-
Flatten[Table[n!/k! Binomial[n-1,k-1]2^k,{n,10},{k,n}]] (* Harvey P. Dale, May 25 2011 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
for(n=1,10, for(k=1, n, print1(n!/k!*binomial(n-1,k-1)*2^k, ", "))) \\ G. C. Greubel, May 23 2018
A247500
Triangle read by rows: T(n, k) = n!*binomial(n + 1, k)/(k + 1)!, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 12, 6, 1, 24, 60, 40, 10, 1, 120, 360, 300, 100, 15, 1, 720, 2520, 2520, 1050, 210, 21, 1, 5040, 20160, 23520, 11760, 2940, 392, 28, 1, 40320, 181440, 241920, 141120, 42336, 7056, 672, 36, 1, 362880, 1814400, 2721600, 1814400, 635040, 127008, 15120, 1080, 45, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 12, 6, 1;
24, 60, 40, 10, 1;
120, 360, 300, 100, 15, 1;
720, 2520, 2520, 1050, 210, 21, 1;
-
a247500 n k = a247500_tabl !! n !! k
a247500_row n = a247500_tabl !! n
a247500_tabl = zipWith (zipWith div) a105278_tabl a004736_tabl
-- Reinhard Zumkeller, Oct 19 2014
-
/* triangle */ [[Factorial(n)/Factorial(k) * Binomial(n+2, k+1) /(n+2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 18 2014
-
T := (n,k) -> ((k+1)*(n+1)*GAMMA(n+1)^2)/(GAMMA(k+2)^2*GAMMA(n-k+2));
A247500 := (n, k) -> (n!/(k+1)!)*binomial(n + 1, k):
-
Table[((k + 1) (n + 1) Gamma[n + 1]^2)/(Gamma[k + 2]^2*
Gamma[n - k + 2]), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 19 2015 *)
A145118
Denominator polynomials for continued fraction generating function for n!.
Original entry on oeis.org
1, 1, 1, -1, 1, -2, 1, -4, 2, 1, -6, 6, 1, -9, 18, -6, 1, -12, 36, -24, 1, -16, 72, -96, 24, 1, -20, 120, -240, 120, 1, -25, 200, -600, 600, -120, 1, -30, 300, -1200, 1800, -720, 1, -36, 450, -2400, 5400, -4320, 720, 1, -42, 630, -4200, 12600, -15120
Offset: 0
Triangle begins:
1;
1;
1, -1;
1, -2;
1, -4, 2;
1, -6, 6;
1, -9, 18, -6;
1, -12, 36, -24;
1, -16, 72, -96, 24;
1, -20, 120, -240, 120;
1, -25, 200, -600, 600, -120;
1, -30, 300, -1200, 1800, -720;
1, -36, 450, -2400, 5400, -4320, 720;
-
T:= (n, k)-> (-1)^k* binomial(iquo(n+1, 2),k) *binomial(iquo(n, 2), k)*k!:
seq (seq (T(n, k), k=0..iquo(n, 2)), n=0..16); # Alois P. Heinz, Dec 04 2012
A169653
Triangle T(n,k) = A008297(n,k) + A008297(n,n-k+1), read by rows.
Original entry on oeis.org
-2, 3, 3, -7, -12, -7, 25, 48, 48, 25, -121, -260, -240, -260, -121, 721, 1830, 1500, 1500, 1830, 721, -5041, -15162, -13230, -8400, -13230, -15162, -5041, 40321, 141176, 142296, 70560, 70560, 142296, 141176, 40321, -362881, -1451592, -1695456, -874944, -423360, -874944, -1695456, -1451592, -362881
Offset: 1
Triangle begins as:
-2;
3, 3;
-7, -12, -7;
25, 48, 48, 25;
-121, -260, -240, -260, -121;
721, 1830, 1500, 1500, 1830, 721;
-5041, -15162, -13230, -8400, -13230, -15162, -5041;
40321, 141176, 142296, 70560, 70560, 142296, 141176, 40321;
-
A001263:= func< n,k | Binomial(n-1, k-1)*Binomial(n,k-1)/k >;
A169653:= func< n,k | (-1)^n*A001263(n, k)*(Factorial(k) + Factorial(n-k+1)) >;
[A169653(n, k): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
-
t[n_, m_] = (-1)^n*(n!/m!)*Binomial[n-1, m-1];
T[n_, m_] = t[n, m] + t[n, n-m+1];
Table[T[n,k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Feb 23 2021 *)
-
def A001263(n, k): return binomial(n-1, k-1)*binomial(n,k-1)/k
def A169653(n, k): return (-1)^n*A001263(n, k)*(factorial(k) + factorial(n-k+1))
flatten([[A169653(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
A268434
Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 10, 10, 1]
[0, 100, 140, 28, 1]
[0, 1700, 2900, 840, 60, 1]
[0, 44200, 85800, 31460, 3300, 110, 1]
[0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1]
-
T := proc(n,k) option remember;
if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
seq(seq(T(n,k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
(n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
-
#cached_function
def T(n, k):
if n==k: return 1
if k<0 or k>n: return 0
return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
for n in range(8): print([T(n, k) for k in (0..n)])
# Alternatively with the function PtransMatrix (cf. A269941):
PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))
A130560
Numerators of Sheffer a-sequence for Jabotinsky type triangle S2(3):=A035342.
Original entry on oeis.org
1, 3, 1, -3, 3, -15, 45, -315, 315, -2835, 14175, -155925, 467775, -6081075, 42567525, -638512875, 638512875, -10854718875, 97692469875, -1856156927625, 9280784638125, -194896477400625, 2143861251406875, -49308808782358125, 147926426347074375, -3698160658676859375
Offset: 0
Rationals: [1, 3/2, 1/2, -3/4, 3/2, -15/4, 45/4, -315/8, 315/2, -2835/4,...].
a-sequence for S2(2):=
A105278 is [1, 1, 0, 0, 0, ...].
A137478
A triangle of recursive Fibonacci Lah numbers: f(n) = Fibonacci(n)*f(n - 1), L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 6, 18, 9, 1, 30, 120, 90, 20, 1, 240, 1200, 1200, 400, 40, 1, 3120, 18720, 23400, 10400, 1560, 78, 1, 65520, 458640, 687960, 382200, 76440, 5733, 147, 1, 2227680, 17821440, 31187520, 20791680, 5197920, 519792, 19992, 272, 1
Offset: 1
Triangle begins as:
1;
1, 1;
2, 4, 1;
6, 18, 9, 1;
30, 120, 90, 20, 1;
240, 1200, 1200, 400, 40, 1;
3120, 18720, 23400, 10400, 1560, 78, 1;
65520, 458640, 687960, 382200, 76440, 5733, 147, 1;
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page86
-
f:= func< n | (&*[Fibonacci(j): j in [1..n]]) >;
[[Binomial(n-1,k-1)*(f(n)/f(k)): k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 15 2019
-
f[n_]:= Product[Fibonacci[j], {j, 1, n}]; Table[Binomial[n-1, k-1]* f[n]/f[k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, May 15 2019 *)
-
{f(n) = prod(j=1,n, fibonacci(j))};
{T(n,k) = binomial(n-1, k-1)*(f(n)/f(k))};
for(n=1, 12, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 15 2019
-
def f(n): return product(fibonacci(j) for j in (1..n))
[[binomial(n-1,k-1)*(f(n)/f(k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 15 2019
A169654
Triangle T(n, k) = A169643(n, k) - A169653(n, 1) + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -4, 1, 1, 24, 24, 1, 1, -138, -118, -138, 1, 1, 1110, 780, 780, 1110, 1, 1, -10120, -8188, -3358, -8188, -10120, 1, 1, 100856, 101976, 30240, 30240, 101976, 100856, 1, 1, -1088710, -1332574, -512062, -60478, -512062, -1332574, -1088710, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, -4, 1;
1, 24, 24, 1;
1, -138, -118, -138, 1;
1, 1110, 780, 780, 1110, 1;
1, -10120, -8188, -3358, -8188, -10120, 1;
1, 100856, 101976, 30240, 30240, 101976, 100856, 1;
1, -1088710, -1332574, -512062, -60478, -512062, -1332574, -1088710, 1;
1, 12700890, 18147240, 9132480, 816480, 816480, 9132480, 18147240, 12700890, 1;
-
A001263:= func< n,k | Binomial(n-1, k-1)*Binomial(n,k-1)/k >;
A169653:= func< n,k | (-1)^n*A001263(n, k)*(Factorial(k) + Factorial(n-k+1)) >;
A169654:= func< n,k | A169653(n, k) - A169653(n, 1) + 1 >;
[A169654(n, k): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
-
t[n_, m_] = (-1)^n*(n!/m!)*Binomial[n-1, m-1];
T[n_, m_] = t[n, m] + t[n, n-m+1] - (-1)^n*(n! + 1) + 1;
Table[T[n,k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Feb 23 2021 *)
-
def A001263(n, k): return binomial(n-1, k-1)*binomial(n,k-1)/k
def A169653(n, k): return (-1)^n*A001263(n, k)*(factorial(k) + factorial(n-k+1))
def A169654(n, k): return A169653(n, k) - A169653(n, 1) + 1
flatten([[A169654(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
Comments