cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 264 results. Next

A003022 Length of shortest (or optimal) Golomb ruler with n marks.

Original entry on oeis.org

1, 3, 6, 11, 17, 25, 34, 44, 55, 72, 85, 106, 127, 151, 177, 199, 216, 246, 283, 333, 356, 372, 425, 480, 492, 553, 585
Offset: 2

Views

Author

Keywords

Comments

a(n) is the least integer such that there is an n-element set of integers between 0 and a(n), the sums of pairs (of not necessarily distinct elements) of which are distinct.
From David W. Wilson, Aug 17 2007: (Start)
An n-mark Golomb ruler has a unique integer distance between any pair of marks and thus measures n(n-1)/2 distinct integer distances.
An optimal n-mark Golomb ruler has the smallest possible length (distance between the two end marks) for an n-mark ruler.
A perfect n-mark Golomb ruler has length exactly n(n-1)/2 and measures each distance from 1 to n(n-1)/2. (End)
Positions where A143824 increases (see also A227590). - N. J. A. Sloane, Apr 08 2016
From Gus Wiseman, May 17 2019: (Start)
Also the smallest m such that there exists a length-n composition of m for which every restriction to a subinterval has a different sum. Representatives of compositions for the first few terms are:
0: ()
1: (1)
3: (2,1)
6: (2,3,1)
11: (3,1,5,2)
17: (4,2,3,7,1)
Representatives of corresponding Golomb rulers are:
{0}
{0,1}
{0,2,3}
{0,2,5,6}
{0,3,4,9,11}
{0,4,6,9,16,17}
(End)

Examples

			a(5)=11 because 0-1-4-9-11 (0-2-7-10-11) resp. 0-3-4-9-11 (0-2-7-8-11) are shortest: there is no b0-b1-b2-b3-b4 with different distances |bi-bj| and max. |bi-bj| < 11.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315.
  • A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff.
  • S. W. Golomb, How to number a graph, pp. 23-37 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • Richard K. Guy, Unsolved Problems in Number Theory (2nd edition), Springer-Verlag (1994), Section C10.
  • A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13.
  • Miller, J. C. P., Difference bases. Three problems in additive number theory. Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pp. 299--322. Academic Press, London,1971. MR0316269 (47 #4817)
  • Rhys Price Jones, Gracelessness, Proc. 10th S.-E. Conf. Combin., Graph Theory and Computing, 1979, pp. 547-552.
  • Ana Salagean, David Gardner and Raphael Phan, Index Tables of Finite Fields and Modular Golomb Rulers, in Sequences and Their Applications - SETA 2012, Lecture Notes in Computer Science. Volume 7280, 2012, pp. 136-147.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A106683 for triangle of marks.
0-1-4-9-11 corresponds to 1-3-5-2 in A039953: 0+1+3+5+2=11
A row or column of array in A234943.
Adding 1 to these terms gives A227590. Cf. A143824.
For first differences see A270813.

Programs

  • Mathematica
    Min@@Total/@#&/@GatherBy[Select[Join@@Permutations/@Join@@Table[IntegerPartitions[i],{i,0,15}],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&],Length] (* Gus Wiseman, May 17 2019 *)
  • Python
    from itertools import combinations, combinations_with_replacement, count
    def a(n):
        for k in count(n-1):
            for c in combinations(range(k), n-1):
                c = c + (k, )
                ss = set()
                for s in combinations_with_replacement(c, 2):
                    if sum(s) in ss: break
                    else: ss.add(sum(s))
                if len(ss) == n*(n+1)//2: return k # Jianing Song, Feb 14 2025, adapted from the python program of A345731

Formula

a(n) >= n(n-1)/2, with strict inequality for n >= 5 (Golomb). - David W. Wilson, Aug 18 2007

Extensions

425 sent by Ed Pegg Jr, Nov 15 2004
a(25), a(26) proved by OGR-25 and OGR-26 projects, added by Max Alekseyev, Sep 29 2010
a(27) proved by OGR-27, added by David Consiglio, Jr., Jun 09 2014
a(28) proved by OGR-28, added by David Consiglio, Jr., Jan 19 2023

A363225 Number of integer partitions of n containing three parts (a,b,c) (repeats allowed) such that a + b = c. A variation of sum-full partitions.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 29, 43, 58, 81, 109, 148, 195, 263, 339, 445, 574, 744, 942, 1209, 1515, 1923, 2399, 3005, 3721, 4629, 5693, 7024, 8589, 10530, 12804, 15596, 18876, 22870, 27538, 33204, 39816, 47766, 57061, 68161, 81099, 96510, 114434, 135634
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Comments

Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.

Examples

			The a(3) = 1 through a(9) = 14 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (431)      (432)
                       (2211)   (3211)    (521)      (621)
                       (21111)  (22111)   (3221)     (3321)
                                (211111)  (4211)     (4221)
                                          (22211)    (4311)
                                          (32111)    (5211)
                                          (221111)   (22221)
                                          (2111111)  (32211)
                                                     (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

For subsets of {1..n} we have A093971, A088809 without re-using parts.
The complement for subsets is A007865, A085489 without re-using parts.
Without re-using parts we have A237113, complement A236912.
For sums of any length > 1 (without re-usable parts) we have A237668, complement A237667.
The strict case is A363226.
The complement is counted by A364345, strict A364346.
These partitions have ranks A364348, complement A364347.
The strict linear combination-free version is A364350.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A363225(n): return sum(1 for p in partitions(n) if any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 21 2023

Extensions

a(31)-a(48) from Chai Wah Wu, Sep 21 2023

A169942 Number of Golomb rulers of length n.

Original entry on oeis.org

1, 1, 3, 3, 5, 7, 13, 15, 27, 25, 45, 59, 89, 103, 163, 187, 281, 313, 469, 533, 835, 873, 1319, 1551, 2093, 2347, 3477, 3881, 5363, 5871, 8267, 9443, 12887, 14069, 19229, 22113, 29359, 32229, 44127, 48659, 64789, 71167, 94625, 105699, 139119, 151145, 199657
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - Tomas Boothby, May 15 2012
Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - Gus Wiseman, May 16 2019

Examples

			For n=2, there is one Golomb Ruler: {0,2}.  For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - _Tomas Boothby_, May 15 2012
From _Gus Wiseman_, May 16 2019: (Start)
The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)
            (12)  (13)  (14)  (15)   (16)   (17)
            (21)  (31)  (23)  (24)   (25)   (26)
                        (32)  (42)   (34)   (35)
                        (41)  (51)   (43)   (53)
                              (132)  (52)   (62)
                              (231)  (61)   (71)
                                     (124)  (125)
                                     (142)  (143)
                                     (214)  (152)
                                     (241)  (215)
                                     (412)  (251)
                                     (421)  (341)
                                            (512)
                                            (521)
(End)
		

Crossrefs

Related to thickness: A169940-A169954, A061909.
Related to Golomb rulers: A036501, A054578, A143823.
Row sums of A325677.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,15}] (* Gus Wiseman, May 16 2019 *)
  • Sage
    def A169942(n):
        R = QQ['x']
        return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2)
    [A169942(n) for n in range(1,8)]
    # Tomas Boothby, May 15 2012

Formula

a(n) = A169952(n) - A169952(n-1) for n>1. - Andrew Howroyd, Jul 09 2017

Extensions

a(15)-a(30) from Nathaniel Johnston, Nov 12 2011
a(31)-a(50) from Tomas Boothby, May 15 2012

A089723 a(1)=1; for n>1, a(n) gives number of ways to write n as n = x^y, 2 <= x, 1 <= y.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Naohiro Nomoto, Jan 07 2004

Keywords

Comments

This function depends only on the prime signature of n. - Franklin T. Adams-Watters, Mar 10 2006
a(n) is the number of perfect divisors of n. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) > 1 for perfect powers n = A001597(m) for m > 2. - Jaroslav Krizek, Jan 23 2010
Also the number of uniform perfect integer partitions of n - 1. An integer partition of n is uniform if all parts appear with the same multiplicity, and perfect if every nonnegative integer up to n is the sum of a unique submultiset. The Heinz numbers of these partitions are given by A326037. The a(16) = 3 partitions are: (8,4,2,1), (4,4,4,1,1,1), (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). - Gus Wiseman, Jun 07 2019
The record values occur at 1 and at 2^A002182(n) for n > 1. - Amiram Eldar, Nov 06 2020

Examples

			144 = 2^4 * 3^2, gcd(4,2) = 2, d(2) = 2, so a(144) = 2. The representations are 144^1 and 12^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:          1, 2, 3, 4, 5, 6, 7, 8, 9, ...
----------------------------------------------------
1st powers: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
Squares:    1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:      1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
Quartics:   1, 0, 0, 0, 0, 0, 0, 0, 0, ... (A374016)
...
Sum:       oo, 1, 1, 2, 1, 1, 1, 2, 2, ...
a(1)=1:     1, 1, 1, 2, 1, 1, 1, 2, 2, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A089723 := proc(n) local t1,t2,g,j;
    if n=1 then 1 else
    t1:=ifactors(n)[2]; t2:=nops(t1); g := t1[1][2];
    for j from 2 to t2 do g:=gcd(g,t1[j][2]); od:
    tau(g); fi; end;
    [seq(A089723(n),n=1..100)]; # N. J. A. Sloane, Nov 10 2016
  • Mathematica
    Table[DivisorSigma[0, GCD @@ FactorInteger[n][[All, 2]]], {n, 100}] (* Gus Wiseman, Jun 12 2017 *)
  • PARI
    a(n) = if (n==1, 1, numdiv(gcd(factor(n)[,2]))); \\ Michel Marcus, Jun 13 2017
    
  • Python
    from math import gcd
    from sympy import factorint, divisor_sigma
    def a(n):
        if n == 1: return 1
        e = list(factorint(n).values())
        g = e[0]
        for ei in e[1:]: g = gcd(g, ei)
        return divisor_sigma(g, 0)
    print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 15 2021

Formula

If n = Product p_i^e_i, a(n) = d(gcd()). - Franklin T. Adams-Watters, Mar 10 2006
Sum_{n=1..m} a(n) = A255165(m) + 1. - Richard R. Forberg, Feb 16 2015
Sum_{n>=2} a(n)/n^s = Sum_{n>=2} 1/(n^s-1) = Sum_{k>=1} (zeta(s*k)-1) for all real s with Re(s) > 1 (Golomb, 1973). - Amiram Eldar, Nov 06 2020
For n > 1, a(n) = Sum_{i=1..floor(n/2)} floor(n^(1/i))-floor((n-1)^(1/i)). - Wesley Ivan Hurt, Dec 08 2020
Sum_{n>=1} (a(n)-1)/n = 1 (Mycielski, 1951). - Amiram Eldar, Jul 15 2021
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = 1 + A259362(n) = 1 + A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
G.f.: x + Sum_{j>=2, k>=1} x^(j^k). (End)

A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 3, 1, 1, 1, 1, 3, 4, 2, 2, 1, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 5, 6, 3, 2, 3, 1, 3, 2, 3, 6, 8, 3, 3, 4, 3, 3, 4, 3, 3, 8, 10, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

First differs from A284593 at T(6,3) = 1, A284593(6,3) = 2.
Rows are palindromic.
Are there only two zeros in the whole triangle?

Examples

			Triangle begins:
  1
  1  1
  1  0  1
  2  1  1  2
  2  1  0  1  2
  3  1  1  1  1  3
  4  2  2  1  2  2  4
  5  2  2  2  2  2  2  5
  6  3  2  3  1  3  2  3  6
  8  3  3  4  3  3  4  3  3  8
Row n = 6 counts the following strict partitions:
  (6)      (5,1)    (4,2)    (3,2,1)  (4,2)    (5,1)    (6)
  (5,1)    (3,2,1)  (3,2,1)           (3,2,1)  (3,2,1)  (5,1)
  (4,2)                                                 (4,2)
  (3,2,1)                                               (3,2,1)
Row n = 10 counts the following strict partitions:
  A     91    82    73    64    532   64    73    82    91    A
  64    541   532   532   541   541   541   532   532   541   64
  73    631   721   631   631   4321  631   631   721   631   73
  82    721   4321  721   4321        4321  721   4321  721   82
  91    4321        4321                    4321        4321  91
  532                                                         532
  541                                                         541
  631                                                         631
  721                                                         721
  4321                                                        4321
		

Crossrefs

Columns k = 0 and k = n are A000009.
The non-strict complement is A046663, central column A006827.
Central column n = 2k is A237258.
For subsets instead of partitions we have A365381.
The non-strict case is A365543.
The complement is A365663.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#],k]&]], {n,0,10},{k,0,n}]

A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
Offset: 2

Views

Author

Gus Wiseman, Sep 17 2023

Keywords

Comments

Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  2  2  2  2
  2  2  3  2  2
  3  3  3  3  3  3
  3  4  3  5  3  4  3
  5  5  4  5  5  4  5  5
  5  6  5  6  7  6  5  6  5
  7  7  7  7  7  7  7  7  7  7
  8  9  8  8  8 11  8  8  8  9  8
Row n = 8 counts the following strict partitions:
  (8)    (8)      (8)    (8)      (8)    (8)      (8)
  (6,2)  (7,1)    (7,1)  (7,1)    (7,1)  (7,1)    (6,2)
  (5,3)  (5,3)    (6,2)  (6,2)    (6,2)  (5,3)    (5,3)
         (4,3,1)         (5,3)           (4,3,1)
                         (5,2,1)
		

Crossrefs

Columns k = 0 and k = n are A025147.
The non-strict version is A046663, central column A006827.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
The complement is A365661, non-strict A365543, central column A237258.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364272 counts sum-full strict partitions, sum-free A364349.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]

A188431 The number of n-full sets, F(n).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 10, 13, 14, 17, 20, 25, 28, 34, 40, 46, 54, 62, 69, 80, 90, 102, 115, 131, 144, 167, 186, 213, 239, 273, 304, 349, 388, 441, 495, 563, 625, 710, 790, 890, 990, 1114, 1232, 1387, 1530, 1713, 1894, 2119, 2330, 2605, 2866, 3192, 3512, 3910, 4289, 4774, 5237, 5809, 6377, 7068, 7739
Offset: 0

Views

Author

Madjid Mirzavaziri, Mar 31 2011

Keywords

Comments

Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. Then F(n) denotes the number of n-full sets.
Also the number of distinct and complete partitions of n, by definition, which are counted by A000009 and A126796. - George Beck, Nov 06 2017
An integer partition of n is complete (see also A325781) if every number from 0 to n is the sum of some submultiset of the parts. The Heinz numbers of these partitions are given by A325986. - Gus Wiseman, May 31 2019

Examples

			a(26) = 10, because there are 10 26-full sets: {1,2,4,5,6,8}, {1,2,3,5,7,8}, {1,2,3,5,6,9}, {1,2,3,4,7,9}, {1,2,3,4,6,10}, {1,2,3,4,5,11}, {1,2,4,8,11}, {1,2,4,7,12}, {1,2,4,6,13}, {1,2,3,7,13}.
G.f.: 1 = 1/(1+x) + 1*x/((1+x)*(1+x^2)) + 0*x^2/((1+x)*(1+x^2)*(1+x^3)) + 1*x^3/((1+x)*(1+x^2)*(1+x^3)*(1+x^4)) +...+ a(n)*x^n / Product_{k=1..n+1} (1+x^k) +...
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral, Memo)
    a188431 n = a188431_list !! (n-1)
    a188431_list = map
       (\x -> sum [fMemo x i | i <- [a188429 x .. a188430 x]]) [1..] where
       fMemo = memo2 integral integral f
       f _ 1 = 1
       f m i = sum [fMemo (m - i) j |
                    j <- [a188429 (m - i) .. min (a188430 (m - i)) (i - 1)]]
    -- Reinhard Zumkeller, Aug 06 2015
  • Maple
    sums:= proc(s) local i, m;
              m:= max(s[]);
             `if`(m<1, {}, {m, seq([i, i+m][], i=sums(s minus {m}))})
           end:
    a:= proc(n) local b;
          b:= proc(i,s) local si;
                if i=1 then `if`(sums(s)={$1..n}, 1, 0)
              else si:= s union {i};
                   b(i-1, s)+ `if`(max(sums(si)[])>n, 0, b(i-1, si))
                fi
              end; b(n, {1})
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 03 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n or i>n-i+1, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, May 20 2017
  • Mathematica
    Sums[s_] := Sums[s] = With[{m = Max[s]}, If[m < 1, {}, Union @ Flatten @ Join[{m}, Table[{i, i + m}, {i, Sums[s ~Complement~ {m}]}]]]];
    a[n_] := Module[{b}, b[i_, s_] := b[i, s] = Module[{si}, If[i == 1, If[Sums[s] == Range[n], 1, 0], si = s ~Union~ {i}; b[i-1, s] + If[Max[ Sums[si]] > n, 0, b[i - 1, si]]]]; b[n, {1}]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 80}] (* Jean-François Alcover, Apr 12 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Union[Total/@Union[Subsets[#]]]==Range[0,n]&]],{n,30}] (* Gus Wiseman, May 31 2019 *)
  • PARI
    /* As coefficients in g.f. */
    {a(n)=local(A=[1]); for(i=1, n+1, A=concat(A,0); A[#A]=polcoeff(1 - sum(m=1,#A,A[m]*x^m/prod(k=1, m, 1+x^k +x*O(x^#A) )), #A) ); A[n+1]}
    for(n=0, 50, print1(a(n),", ")) /* Paul D. Hanna, Mar 06 2012 */
    

Formula

F(n) = Sum_(i=L(n) .. U(n), F(n,i)), where F(n,i) = Sum_(j=L(n-i) .. min(U(n-i),i-1), F(n-i,j) ) and L(n), U(n) are defined in A188429 and A188430, respectively.
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1+x^k), with a(0)=1. - Paul D. Hanna, Mar 08 2012
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(3/4), where c = 0.03316508... - Vaclav Kotesovec, Oct 21 2019

Extensions

More terms from Alois P. Heinz, Apr 03 2011
a(0)=1 prepended by Alois P. Heinz, May 20 2017

A316313 Number of integer partitions of n such that every distinct submultiset has a different average.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 17, 18, 22, 28, 26, 34, 37, 44, 50, 61, 53, 77, 82, 93, 89, 120, 120, 149, 138, 174, 180, 222, 193, 257, 262, 305, 281, 367, 359, 424, 398, 487, 507, 590, 526, 662, 666, 782, 729, 894, 892, 995, 987, 1154, 1188, 1370
Offset: 1

Views

Author

Gus Wiseman, Jun 29 2018

Keywords

Comments

Note that such a partition is necessarily strict.

Examples

			The a(8) = 6 integer partitions are (8), (71), (62), (53), (521), (431).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Mean/@Union[Subsets[#]]&]],{n,20}]

A364916 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
As a triangle, also the number of ways to write n as a *positive* linear combination of the parts of a strict integer partition of k.

Examples

			Array begins:
  1  1  1  2  2  3  4   5   6   8   10   12  15   18   22   27
  0  1  0  1  1  1  2   2   3   3   5    5   7    8    10   12
  0  1  1  2  1  2  4   4   5   6   9    10  13   15   19   23
  0  1  0  3  2  2  4   4   6   7   11   11  15   17   22   27
  0  1  1  3  3  3  7   7   8   10  16   17  23   27   33   42
  0  1  0  3  2  4  7   6   9   9   17   17  23   26   33   43
  0  1  1  5  3  4  12  10  13  16  26   27  36   42   52   68
  0  1  0  4  3  3  10  11  13  13  27   25  35   40   51   67
  0  1  1  5  4  5  15  13  19  20  36   37  51   58   72   97
  0  1  0  6  4  5  14  13  18  23  42   39  54   61   78   105
  0  1  1  6  4  6  20  17  23  25  54   50  69   80   98   138
  0  1  0  6  4  5  19  16  23  24  54   55  71   80   103  144
  0  1  1  8  6  7  27  23  30  35  72   70  103  113  139  199
  0  1  0  7  5  6  24  21  29  31  75   68  95   115  139  201
  0  1  1  8  5  7  31  27  36  39  90   86  122  137  178  255
  0  1  0  9  6  8  31  27  38  42  100  93  129  148  187  289
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   3  1  2  0  1  0
   4  1  1  3  1  1  0
   5  2  2  2  3  0  1  0
   6  2  4  2  3  3  1  1  0
   8  3  4  4  3  2  5  0  1  0
  10  3  5  4  7  4  3  4  1  1  0
  12  5  6  6  7  7  4  3  5  0  1  0
  15  5  9  7  8  6 12  3  4  6  1  1  0
  18  7 10 11 10  9 10 10  5  4  6  0  1  0
  22  8 13 11 16  9 13 11 15  5  4  6  1  1  0
  27 10 15 15 17 17 16 13 13 14  6  4  8  0  1  0
		

Crossrefs

Same as A116861 with offset 0 and rows reversed, non-strict version A364912.
Row n = 0 is A000009.
Row n = 1 is A096765.
Row n = 2 is A365005.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A000035.
Column k = 3 is A137719.
The main diagonal is A364910.
Left half has row sums A365002.
For not just strict partitions we have A365004, diagonal A364907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A066328 adds up distinct prime indices.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    t[n_,k_]:=Length[Join@@Table[combs[n,ptn],{ptn,Select[IntegerPartitions[k],UnsameQ@@#&]}]];
    Table[t[k,n-k],{n,0,15},{k,0,n}]

A326020 Number of complete subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 15, 27, 50, 95, 185, 365, 724, 1441, 2873, 5735, 11458, 22902, 45789, 91561, 183102, 366180, 732331, 1464626, 2929209, 5858367, 11716674, 23433277, 46866473, 93732852, 187465596, 374931067, 749861989, 1499723808, 2999447418
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2019

Keywords

Comments

A set of positive integers summing to n is complete if every nonnegative integer up to n is the sum of some subset.

Examples

			The a(0) = 1 through a(6) = 15 subsets:
  {}  {}   {}     {}       {}         {}           {}
      {1}  {1}    {1}      {1}        {1}          {1}
           {1,2}  {1,2}    {1,2}      {1,2}        {1,2}
                  {1,2,3}  {1,2,3}    {1,2,3}      {1,2,3}
                           {1,2,4}    {1,2,4}      {1,2,4}
                           {1,2,3,4}  {1,2,3,4}    {1,2,3,4}
                                      {1,2,3,5}    {1,2,3,5}
                                      {1,2,4,5}    {1,2,3,6}
                                      {1,2,3,4,5}  {1,2,4,5}
                                                   {1,2,4,6}
                                                   {1,2,3,4,5}
                                                   {1,2,3,4,6}
                                                   {1,2,3,5,6}
                                                   {1,2,4,5,6}
                                                   {1,2,3,4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Union[Plus@@@Subsets[#]]==Range[0,Total[#]]&]],{n,0,10}]

Extensions

a(17)-a(34) from Charlie Neder, Jun 05 2019
Previous Showing 21-30 of 264 results. Next