cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A111791 Positive integers sorted by rote height, as measured by A109301.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 36, 5, 7, 8, 10, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 27, 28, 30, 35, 37, 39, 40, 42, 45, 46, 48, 49, 50, 52, 54, 56, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 78, 80, 81, 84, 90, 91, 92, 98, 100
Offset: 1

Views

Author

Jon Awbrey, Aug 24 2005, revised Sep 02 2005

Keywords

Examples

			Table in which the h-th row lists the positive integers of rote height h:
h | m such that rhig(m) = A109301(m) = h
--+------------------------------------------------------
0 |  1
--+------------------------------------------------------
1 |  2
--+------------------------------------------------------
2 |  3  4  6  9 12 18 36
--+------------------------------------------------------
3 |  5  7  8 10 13 14 15 16 20 21 23 24 25 26 27  28 30
  | 35 37 39 40 42 45 46 48 49 50 52 54 56 60 61  63
  | 64 65 69 70 72 74 75 78 80 81 84 90 91 92 98 100 ...
--+------------------------------------------------------
4 | 11 17 19 22 29 32 33 34 38 41 43 44 47 51 53 55
  | 57 58 66 68 71 73 76 77 82 83 85 86 87 88 89 94
  | 95 96 97 99 ...
--+------------------------------------------------------
5 | 31 59 62 67 79 93 ...
--+------------------------------------------------------
First column = A007097. Count in h^th row = A109300(h).
Cumulative count up through the h^th row = A050924(h+1).
		

Crossrefs

A111792 Positive integers sorted by rote weight (A062537) and rote height (A109301).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 12, 18, 10, 13, 14, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536
Offset: 1

Views

Author

Jon Awbrey, Aug 25 2005, revised Aug 27 2005

Keywords

Examples

			Table of Integers, Primal Codes, Sort Parameters and Subtotals
` ` a ` code` ` | g h | s | t
----------------+-----+---+---
` ` 1 = { } ` ` | 0 0 | 1 | 1
----------------+-----+---+---
` ` 2 = 1:1 ` ` | 1 1 | 1 | 1
----------------+-----+---+---
` ` 3 = 2:1 ` ` | 2 2 | ` |
` ` 4 = 1:2 ` ` | 2 2 | 2 | 2
----------------+-----+---+---
` ` 6 = 1:1 2:1 | 3 2 | ` |
` ` 9 = 2:2 ` ` | 3 2 | 2 |
----------------+-----+---+---
` ` 5 = 3:1 ` ` | 3 3 | ` |
` ` 7 = 4:1 ` ` | 3 3 | ` |
` ` 8 = 1:3 ` ` | 3 3 | ` |
` `16 = 1:4 ` ` | 3 3 | 4 | 6
----------------+-----+---+---
` `12 = 1:2 2:1 | 4 2 | ` |
` `18 = 1:1 2:2 | 4 2 | 2 |
----------------+-----+---+---
` `10 = 1:1 3:1 | 4 3 | ` |
` `13 = 6:1 ` ` | 4 3 | ` |
` `14 = 1:1 4:1 | 4 3 | ` |
` `23 = 9:1 ` ` | 4 3 | ` |
` `25 = 3:2 ` ` | 4 3 | ` |
` `27 = 2:3 ` ` | 4 3 | ` |
` `49 = 4:2 ` ` | 4 3 | ` |
` `64 = 1:6 ` ` | 4 3 | ` |
` `81 = 2:4 ` ` | 4 3 | ` |
` 512 = 1:9 ` ` | 4 3 |10 |
----------------+-----+---+---
` `11 = 5:1 ` ` | 4 4 | ` |
` `17 = 7:1 ` ` | 4 4 | ` |
` `19 = 8:1 ` ` | 4 4 | ` |
` `32 = 1:5 ` ` | 4 4 | ` |
` `53 = 16:1` ` | 4 4 | ` |
` 128 = 1:7 ` ` | 4 4 | ` |
` 256 = 1:8 ` ` | 4 4 | ` |
65536 = 1:16` ` | 4 4 | 8 |20
----------------+-----+---+---
a = this sequence
g = rote weight in gammas = A062537
h = rote height in gammas = A109301
s = count in (g, h) class = A111793
t = count in weight class = A061396
		

Crossrefs

A111798 Positive integers sorted by rote height (A109301) and omega (A001221).

Original entry on oeis.org

1, 2, 3, 4, 9, 6, 12, 18, 36, 5, 7, 8, 13, 16, 23, 25, 27, 37, 49, 61, 64, 81, 125, 151, 169, 343, 512, 529, 625, 729, 1369, 2197, 2401, 3721, 4096, 12167, 15625, 19683, 22801, 28561, 50653, 117649, 226981, 262144, 279841, 531441, 1874161, 1953125, 3442951
Offset: 1

Views

Author

Jon Awbrey, Sep 01 2005 - Sep 10 2005

Keywords

Comments

Positive integers m sorted by h(m) = A109301(m) and w(m) = A001221(m).
Defining the "wayage" of a rooted tree to be its root degree, the rote corresponding to the positive integer m has a wayage of w(m) = omega(m) = A001221(m).

Examples

			Table of Primal Functions, Codes, Sort Parameters and Subtotals
Primal Function | ` ` ` ` ` Primal Code ` ` = ` ` a | h w | s | t
----------------+-----------------------------------+-----+---+---
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 | 1 | 1
----------------+-----------------------------------+-----+---+---
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 | 1 | 1
----------------+-----------------------------------+-----+---+---
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 1 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 1 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 9 | 2 1 | 3 |
----------------+-----------------------------------+-----+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 6 | 2 2 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `12 | 2 2 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `18 | 2 2 | ` |
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `36 | 2 2 | 4 | 7
----------------+-----------------------------------+-----+---+---
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 1 | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `16 | 3 1 | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `64 | 3 1 | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 512 | 3 1 | ` |
1:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `4096 | 3 1 | ` |
1:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `262144 | 3 1 | ` |
1:36` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 68719476736 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `27 | 3 1 | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `81 | 3 1 | ` |
2:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 729 | 3 1 | ` |
2:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 19683 | 3 1 | ` |
2:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `531441 | 3 1 | ` |
2:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 387420489 | 3 1 | ` |
2:36` ` ` ` ` ` | ` ` ` ` ` ` ` `150094635296999121 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 1 | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 1 | ` |
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `13 | 3 1 | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `23 | 3 1 | ` |
12:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `37 | 3 1 | ` |
18:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `61 | 3 1 | ` |
36:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 151 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `25 | 3 1 | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `49 | 3 1 | ` |
6:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 169 | 3 1 | ` |
9:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 529 | 3 1 | ` |
12:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `1369 | 3 1 | ` |
18:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `3721 | 3 1 | ` |
36:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 22801 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
3:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 125 | 3 1 | ` |
3:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 625 | 3 1 | ` |
3:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 15625 | 3 1 | ` |
3:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 1953125 | 3 1 | ` |
3:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 244140625 | 3 1 | ` |
3:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 3814697265625 | 3 1 | ` |
3:36` ` ` ` ` ` | ` ` ` `14551915228366851806640625 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
4:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 343 | 3 1 | ` |
4:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `2401 | 3 1 | ` |
4:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `117649 | 3 1 | ` |
4:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `40353607 | 3 1 | ` |
4:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 13841287201 | 3 1 | ` |
4:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` `1628413597910449 | 3 1 | ` |
4:36` ` ` ` ` ` | ` 2651730845859653471779023381601 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
6:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `2197 | 3 1 | ` |
6:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 28561 | 3 1 | ` |
6:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 4826809 | 3 1 | ` |
6:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 10604499373 | 3 1 | ` |
6:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `23298085122481 | 3 1 | ` |
6:18` ` ` ` ` ` | ` ` ` ` ` ` 112455406951957393129 | 3 1 | ` |
6:36` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 13^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
9:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 12167 | 3 1 | ` |
9:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `279841 | 3 1 | ` |
9:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 148035889 | 3 1 | ` |
9:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 1801152661463 | 3 1 | ` |
9:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` 21914624432020321 | 3 1 | ` |
9:18` ` ` ` ` ` | ` ` ` ` 3244150909895248285300369 | 3 1 | ` |
9:36` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 23^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
12:3` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 50653 | 3 1 | ` |
12:4` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 1874161 | 3 1 | ` |
12:6` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `2565726409 | 3 1 | ` |
12:9` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` 129961739795077 | 3 1 | ` |
12:12 ` ` ` ` ` | ` ` ` ` ` ` ` 6582952005840035281 | 3 1 | ` |
12:18 ` ` ` ` ` | ` ` 16890053810563300749953435929 | 3 1 | ` |
12:36 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 37^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
18:3` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `226981 | 3 1 | ` |
18:4` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `13845841 | 3 1 | ` |
18:6` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 51520374361 | 3 1 | ` |
18:9` ` ` ` ` ` | ` ` ` ` ` ` ` ` 11694146092834141 | 3 1 | ` |
18:12 ` ` ` ` ` | ` ` ` ` ` `2654348974297586158321 | 3 1 | ` |
18:18 ` ` ` ` ` | 136753052840548005895349735207881 | 3 1 | ` |
18:36 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 61^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
36:3` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 3442951 | 3 1 | ` |
36:4` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 519885601 | 3 1 | ` |
36:6` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `11853911588401 | 3 1 | ` |
36:9` ` ` ` ` ` | ` ` ` ` ` ` `40812436757196811351 | 3 1 | ` |
36:12 ` ` ` ` ` | ` ` ` 140515219945627518837736801 | 3 1 | ` |
36:18 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `151^18 | 3 1 | ` |
36:36 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `151^36 | 3 1 |77 |
----------------+-----------------------------------+-----+---+---
The last part is left unsorted to show the method of construction.
a (when sorted ) = this sequence
h = rote height in gammas = A109301
w = rote wayage in gammas = A001221
s = count in (h, w) class = A111799
t = count in height class = A109300
		

Crossrefs

A007097 Primeth recurrence: a(n+1) = a(n)-th prime.

Original entry on oeis.org

1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041, 3657500101, 88362852307, 2428095424619, 75063692618249, 2586559730396077, 98552043847093519, 4123221751654370051, 188272405179937051081, 9332039515881088707361, 499720579610303128776791, 28785866289100396890228041
Offset: 0

Views

Author

Keywords

Comments

A007097(n) = Min {k : A109301(k) = n} = the first k whose rote height is n, the level set leader or minimum inverse function corresponding to A109301. - Jon Awbrey, Jun 26 2005
Lubomir Alexandrov informs me that he studied this sequence in his 1965 notebook. - N. J. A. Sloane, May 23 2008
a(n) is the Matula-Goebel number of the rooted path tree on n+1 vertices. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, Feb 18 2012
Conjecture: log(a(1))*log(a(2))*...*log(a(n)) ~ a(n). - Thomas Ordowski, Mar 26 2015

References

  • Lubomir Alexandrov, unpublished notes, circa 1960.
  • L. Longeri, Towards understanding nature and the aesthetics of prime numbers, https://www.longeri.org/prime/nature.html [Broken link, but leave the URL here for historical reasons]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 1 of array A114537.
Left edge of tree A227413, right edge of A246378.
Cf. A078442, A109082 (left inverses).
Subsequence of A245823.

Programs

  • GAP
    P:=Filtered([1..60000],IsPrime);;
    a:=[1];; for n in [2..10] do a[n]:=P[a[n-1]]; od; a; # Muniru A Asiru, Dec 22 2018
  • Haskell
    a007097 n = a007097_list !! n
    a007097_list = iterate a000040 1  -- Reinhard Zumkeller, Jul 14 2013
    
  • Maple
    seq((ithprime@@n)(1),n=0..10); # Peter Luschny, Oct 16 2012
  • Mathematica
    NestList[Prime@# &, 1, 16] (* Robert G. Wilson v, May 30 2006 *)
  • PARI
    print1(p=1);until(,print1(","p=prime(p)))  \\ M. F. Hasler, Oct 09 2011
    

Formula

A049084(a(n+1)) = a(n). - Reinhard Zumkeller, Jul 14 2013
a(n)/a(n-1) ~ log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 26 2015
a(n) = prime^{[n]}(1), with the prime function prime(k) = A000040(k), with a(0) = 1. See the name and the programs. - Wolfdieter Lang, Apr 03 2018
Sum_{n>=1} 1/a(n) = A292667. - Amiram Eldar, Oct 15 2020

Extensions

a(15) corrected and a(16)-a(17) added by Paul Zimmermann
a(18)-a(19) found by David Baugh using a program by Xavier Gourdon and Andrey V. Kulsha, Oct 25 2007
a(20)-a(21) found by Andrey V. Kulsha using a program by Xavier Gourdon, Oct 02 2011
a(22) from Henri Lifchitz, Oct 14 2014
a(23) from David Baugh using Kim Walisch's primecount, May 16 2016

A109298 Primal codes of finite idempotent functions on positive integers.

Original entry on oeis.org

1, 2, 9, 18, 125, 250, 1125, 2250, 2401, 4802, 21609, 43218, 161051, 300125, 322102, 600250, 1449459, 2701125, 2898918, 4826809, 5402250, 9653618, 20131375, 40262750, 43441281, 86882562, 181182375, 362364750, 386683451, 410338673, 603351125, 773366902, 820677346
Offset: 1

Views

Author

Jon Awbrey, Jul 06 2005

Keywords

Comments

Finite idempotent functions are identity maps on finite subsets, counting the empty function as the idempotent on the empty set.
From Gus Wiseman, Mar 09 2019: (Start)
Also numbers whose ordered prime signature is equal to the distinct prime indices in increasing order. A prime index of n is a number m such that prime(m) divides n. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base. The case where the prime indices are taken in decreasing order is A324571.
Also numbers divisible by prime(k) exactly k times for each prime index k. These are a kind of self-describing numbers (cf. A001462, A304679).
Also Heinz numbers of integer partitions where the multiplicity of m is m for all m in the support (counted by A033461). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A062457. For example, 43218 = prime(1)^1 * prime(2)^2 * prime(4)^4.
(End)

Examples

			Writing (prime(i))^j as i:j, we have the following table of examples:
Primal Codes of Finite Idempotent Functions on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = ` ` 2:2
` ` `18 = 1:1 2:2
` ` 125 = ` ` ` ` 3:3
` ` 250 = 1:1 ` ` 3:3
` `1125 = ` ` 2:2 3:3
` `2250 = 1:1 2:2 3:3
` `2401 = ` ` ` ` ` ` 4:4
` `4802 = 1:1 ` ` ` ` 4:4
` 21609 = ` ` 2:2 ` ` 4:4
` 43218 = 1:1 2:2 ` ` 4:4
`161051 = ` ` ` ` ` ` ` ` 5:5
`300125 = ` ` ` ` 3:3 4:4
`322102 = 1:1 ` ` ` ` ` ` 5:5
`600250 = 1:1 ` ` 3:3 4:4
From _Gus Wiseman_, Mar 09 2019: (Start)
The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2) has prime signature {1,2} and the distinct prime indices are also {1,2}.
       1: {}
       2: {1}
       9: {2,2}
      18: {1,2,2}
     125: {3,3,3}
     250: {1,3,3,3}
    1125: {2,2,3,3,3}
    2250: {1,2,2,3,3,3}
    2401: {4,4,4,4}
    4802: {1,4,4,4,4}
   21609: {2,2,4,4,4,4}
   43218: {1,2,2,4,4,4,4}
  161051: {5,5,5,5,5}
  300125: {3,3,3,4,4,4,4}
  322102: {1,5,5,5,5,5}
  600250: {1,3,3,3,4,4,4,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]==k]&]
  • PARI
    is(n) = my(f = factor(n)); for(i = 1, #f~, if(prime(f[i, 2]) != f[i, 1], return(0))); 1 \\ David A. Corneth, Mar 09 2019

Formula

Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/prime(n)^n) = 1.6807104966... - Amiram Eldar, Jan 03 2021

Extensions

Offset set to 1, missing terms inserted and more terms added by Alois P. Heinz, Mar 08 2019

A109297 Primal codes of finite permutations on positive integers.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 540, 600, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2268, 2352, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 10692, 11616, 11776, 14000, 19584, 21609, 27440, 28812, 29403, 29696, 32448, 35000, 37908, 43218, 43776
Offset: 1

Views

Author

Jon Awbrey, Jul 08 2005

Keywords

Comments

A finite permutation is a bijective mapping from a finite set to itself, counting the empty mapping as a permutation of the empty set.
Also Heinz numbers of integer partitions where the set of distinct parts is equal to the set of distinct multiplicities. These partitions are counted by A114640. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			Writing (prime(i))^j as i:j, we have the following table:
Primal Codes of Finite Permutations on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = 2:2
` ` `12 = 1:2 2:1
` ` `18 = 1:1 2:2
` ` `40 = 1:3 3:1
` ` 112 = 1:4 4:1
` ` 125 = 3:3
` ` 250 = 1:1 3:3
` ` 352 = 1:5 5:1
` ` 360 = 1:3 2:2 3:1
` ` 540 = 1:2 2:3 3:1
` ` 600 = 1:3 2:1 3:2
` ` 675 = 2:3 3:2
` ` 832 = 1:6 6:1
` `1008 = 1:4 2:2 4:1
` `1125 = 2:2 3:3
` `1350 = 1:1 2:3 3:2
` `1500 = 1:2 2:1 3:3
` `2176 = 1:7 7:1
` `2250 = 1:1 2:2 3:3
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0,
          a(n-1)) while (l-> sort(map(i-> i[2], l)) <> sort(map(
          i-> numtheory[pi](i[1]), l)))(ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],#==1||Union[PrimePi/@First/@FactorInteger[#]]==Union[Last/@FactorInteger[#]]&] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    is(n) = {my(f = factor(n), p = f[,1], e = vecsort(f[,2])); for(i=1, #p, if(primepi(p[i]) != e[i], return(0))); 1}; \\ Amiram Eldar, Jul 30 2022

Extensions

More terms from Franklin T. Adams-Watters, Dec 19 2005
Offset set to 1 by Alois P. Heinz, Mar 08 2019

A109300 a(n) = number of positive integers whose rote height in gammas is n.

Original entry on oeis.org

1, 1, 7, 999999991
Offset: 0

Views

Author

Jon Awbrey, Jul 04 2005, revised Sep 06 2005

Keywords

Comments

a(n) is the sequence of first differences of A050924. Conversely, A050924 is the sequence of partial sums of a(n). This can be seen as follows. Let P(0) c P(1) c ... c P(n) c ... be an increasing sequence of sets of partial functions that is defined by the recursion: P(0) = {the empty function}, P(n+1) = {partial functions: P(n) -> P(n)}. Then |P(n)| = A050924(n+1) = number of positive integers of rote height at most n, hence |P(n)| - |P(n-1)| = a(n) = number of positive integers of rote height exactly n.

Examples

			Table of Rotes and Primal Functions for Positive Integers of Rote Height 2
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
o-o ` ` o-o ` ` ` o-o ` o-o o-o ` ` o-o o-o ` ` ` o-o o-o ` ` o-o o-o o-o
| ` ` ` | ` ` ` ` | ` ` | ` | ` ` ` | ` | ` ` ` ` | ` | ` ` ` | ` | ` | `
o-o ` o-o ` ` o-o o-o ` o---o ` ` o-o ` o-o ` o-o o---o ` ` o-o ` o---o `
| ` ` | ` ` ` | ` | ` ` | ` ` ` ` | ` ` | ` ` | ` | ` ` ` ` | ` ` | ` ` `
O ` ` O ` ` ` O===O ` ` O ` ` ` ` O=====O ` ` O===O ` ` ` ` O=====O ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
2:1 ` 1:2 ` ` 1:1 2:1 ` 2:2 ` ` ` 1:2 2:1 ` ` 1:1 2:2 ` ` ` 1:2 2:2 ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` 4 ` ` ` 6 ` ` ` ` 9 ` ` ` ` 12` ` ` ` ` 18` ` ` ` ` ` 36` ` ` ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
		

Crossrefs

Formula

a(n) is defined by the recursion a(n+1) = (b(n) + 1)^b(n) - b(n), where a(0) = 1 and b(n) = Sum_[0, n] a(i).

A111800 Order of the rote (rooted odd tree with only exponent symmetries) for n.

Original entry on oeis.org

1, 3, 5, 5, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 11, 7, 9, 9, 9, 11, 11, 11, 9, 11, 9, 11, 9, 11, 11, 13, 11, 9, 13, 11, 13, 11, 11, 11, 13, 13, 11, 13, 11, 13, 13, 11, 13, 11, 9, 11, 13, 13, 9, 11, 15, 13, 13, 13, 11, 15, 11, 13, 13, 9, 15, 15, 11, 13, 13, 15, 13, 13, 13, 13, 13, 13, 15, 15
Offset: 1

Views

Author

Jon Awbrey, Aug 17 2005, based on calculations by David W. Wilson

Keywords

Comments

A061396(n) gives the number of times that 2n+1 appears in this sequence.

Examples

			Writing prime(i)^j as i:j and using equal signs between identified nodes:
2500 = 4 * 625 = 2^2 5^4 = 1:2 3:4 has the following rote:
  ` ` ` ` ` ` ` `
  ` ` ` o-o ` o-o
  ` ` ` | ` ` | `
  ` o-o o-o o-o `
  ` | ` | ` | ` `
  o-o ` o---o ` `
  | ` ` | ` ` ` `
  O=====O ` ` ` `
  ` ` ` ` ` ` ` `
So a(2500) = a(1:2 3:4) = a(1)+a(2)+a(3)+a(4)+1 = 1+3+5+5+1 = 15.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          1+add(a(pi(i[1]))+a(i[2]), i=ifactors(n)[2])
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 25 2015
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1+Sum[a[PrimePi[i[[1]] ] ] + a[i[[2]] ], {i, FactorInteger[n]}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

a(Prod(p_i^e_i)) = 1 + Sum(a(i) + a(e_i)), product over nonzero e_i in prime factorization of n.

A050924 a(n) = (a(n-1)+1)^(a(n-1)), a(0) = 0.

Original entry on oeis.org

0, 1, 2, 9, 1000000000
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 30 1999

Keywords

Comments

Let S(1) c S(2) c ... c S(n) c ... be an increasing sequence of sets of partial functions that is defined as follows: S(0) = empty set, S(n) = {partial functions: S(n-1) -> S(n-1)}. Then |S(n)| = a(n). - Jon Awbrey, Jul 04 2005

Crossrefs

Programs

  • Mathematica
    NestList[(#+1)^#&,0,4] (* Harvey P. Dale, Aug 13 2020 *)

Extensions

The next term is approximately e * 10^9000000000, with nine-place accuracy. - Franklin T. Adams-Watters, Nov 16 2006
a(5) = 2.7182818270999043223766*10^9000000000 = e * 10^9000000000 * 0.9999999995000000004583. - Jon E. Schoenfield, Nov 24 2013

A111793 Triangle T(g, h) = number of rotes of weight g and height h, both in gammas.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 10, 8, 1, 24, 32, 16
Offset: 1

Views

Author

Jon Awbrey, Aug 26 2005, revised Aug 28 2005

Keywords

Comments

T(g, h) = |{positive integers m : A062537(m) = g and A109301(m) = h}|.
Row sums = A061396. Column sums = A109300. See A111792 for details.
Main diagonal T(j, j) = 2^(j-1) for j > 0, T(0, 0) = 1.

Examples

			Table T(g, h), omitting zeros, starts out as follows:
g\h| 0 ` 1 ` 2 ` 3 ` 4 ` 5
---+-----------------------
`0 | 1
`1 | ` ` 1
`2 | ` ` ` ` 2
`3 | ` ` ` ` 2 ` 4
`4 | ` ` ` ` 2 `10 ` 8
`5 | ` ` ` ` 1 `24 `32 `16
		

Crossrefs

Showing 1-10 of 26 results. Next