cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A109502 Array read by antidiagonals: T(m,n) is the number of closed walks of length n on the complete graph on m nodes, m >= 1, n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 4, 6, 6, 0, 0, 1, 0, 5, 12, 21, 10, 1, 0, 1, 0, 6, 20, 52, 60, 22, 0, 0, 1, 0, 7, 30, 105, 204, 183, 42, 1, 0, 1, 0, 8, 42, 186, 520, 820, 546, 86, 0, 0, 1, 0, 9, 56, 301, 1110, 2605, 3276, 1641, 170, 1, 0
Offset: 1

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Examples

			Array begins:
  m\n| 0  1  2  3   4    5     6      7       8        9        10
  ---+------------------------------------------------------------
   1 | 1  0  0  0   0    0     0      0       0        0         0
   2 | 1  0  1  0   1    0     1      0       1        0         1
   3 | 1  0  2  2   6   10    22     42      86      170       342
   4 | 1  0  3  6  21   60   183    546    1641     4920     14763
   5 | 1  0  4 12  52  204   820   3276   13108    52428    209716
   6 | 1  0  5 20 105  520  2605  13020   65105   325520   1627605
   7 | 1  0  6 30 186 1110  6666  39990  239946  1439670   8638026
   8 | 1  0  7 42 301 2100 14707 102942  720601  5044200  35309407
   9 | 1  0  8 56 456 3640 29128 233016 1864136 14913080 119304648
  10 | 1  0  9 72 657 5904 53145 478296 4304673 38742048 348678441
		

Crossrefs

Programs

  • Maple
    T := proc(m, n); ((m-1)^n + (m-1)*(-1)^n)/m end:
    seq(print(seq(T(m, n), n = 0..10)), m = 1..10); # Peter Bala, May 30 2024

Formula

T(m,n) = ((m-1)^n + (m-1)(-1)^n)/m.
G.f.: T(m, n) = [z^n](1 - (m-2)z)/(1 - (m-2)z - (m-1)z^2).
From Peter Bala, May 29 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = m^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A062160.
T(m_1*m_2, n) = Sum_{k = 0..n} Sum_{i = k..n} binomial(n, k)*binomial(n-k, i-k)*T(m_1, i)*T(m_2, n-k). (End)

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006

A015592 a(n) = 10*a(n-1) + 11*a(n-2).

Original entry on oeis.org

0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_12. Example: a(2)=10 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKL are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB and ALB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

Formula

a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - Emeric Deutsch, Apr 01 2004
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(5*x)*sinh(6*x)/6.
a(n) = (11^n - (-1)^n)/12. (End)

A015609 a(n) = 11*a(n-1) + 12*a(n-2).

Original entry on oeis.org

0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_13. Example: a(2)=11 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKLM are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB, ALB and AMB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

  • Magma
    [(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
  • Sage
    [lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
    
  • Sage
    [abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
    

Formula

From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 12^(n-1) - a(n-1).
G.f.: x/(1 - 11*x - 12*x^2). (End)
E.g.f.: exp(-x)*(exp(13*x) - 1)/13. - Stefano Spezia, Mar 11 2020

A137505 Inverse binomial transform of A007910.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 4, -4, 4, 4, -12, 20, -12, -12, 52, -76, 52, 52, -204, 308, -204, -204, 820, -1228, 820, 820, -3276, 4916, -3276, -3276, 13108, -19660, 13108, 13108, -52428, 78644, -52428, -52428, 209716, -314572, 209716, 209716, -838860, 1258292, -838860, -838860, 3355444, -5033164, 3355444
Offset: 0

Views

Author

Paul Curtz, Apr 23 2008

Keywords

Programs

  • Mathematica
    LinearRecurrence[{-1,0,2},{1,1,0},50] (* Harvey P. Dale, Sep 17 2012 *)

Formula

Recurrence: a(n) = -a(n-1) + 2a(n-3), starting 1,1,0.
O.g.f.: (1+x)^2/((1-x)(1+2x+2x^2)). - R. J. Mathar, Jun 12 2008
a(4n) = a(4n+1) = (-1)^n*A109499(n). - Paul Curtz, Nov 01 2009
a(n) = (1/5) * (A137429(n-1) + 4) = A077973(n-2) + 2*A077973(n-1) + A077973(n). - Ralf Stephan, Aug 18 2013

Extensions

More terms from R. J. Mathar, Jun 12 2008

A167291 a(n) = A137505(2n) + A137505(2n+1).

Original entry on oeis.org

2, 2, 0, 0, 8, 8, -24, -24, 104, 104, -408, -408, 1640, 1640, -6552, -6552, 26216, 26216, -104856, -104856, 419432, 419432, -1677720, -1677720, 6710888, 6710888, -26843544, -26843544, 107374184, 107374184, -429496728, -429496728, 1717986920, 1717986920
Offset: 0

Views

Author

Paul Curtz, Nov 01 2009

Keywords

Comments

The formula for the singular sequence, i.e., just each unique term of the sequence (without duplication), is: a(n) = 1/10 (16-(-4)^n). - Harvey P. Dale, Jun 12 2013

Programs

  • Mathematica
    CoefficientList[Series[(-2-6x^2)/((x-1)(4x^2+1)),{x,0,50}],x] (* or *) LinearRecurrence[{1,-4,4},{2,2,0},50] (* Harvey P. Dale, Jun 12 2013 *)

Formula

a(2n) = a(2n+1) = 2*(-1)^n*A109499(n).
G.f. ( -2-6*x^2 ) / ( (x-1)*(4*x^2+1) ). - R. J. Mathar, Feb 06 2011
a(0)=2, a(1)=2, a(2)=0, a(n) = a(n-1)-4*a(n-2)+4*a(n-3). - Harvey P. Dale, Jun 12 2013

A271427 a(n) = 7^n - a(n-1) for n>0, a(0)=0.

Original entry on oeis.org

0, 7, 42, 301, 2100, 14707, 102942, 720601, 5044200, 35309407, 247165842, 1730160901, 12111126300, 84777884107, 593445188742, 4154116321201, 29078814248400, 203551699738807, 1424861898171642, 9974033287201501, 69818233010410500, 488727631072873507, 3421093417510114542
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence b(n) = k^n - b(n-1), where n>0 and b(0)=0, is k*x/((1 + x)*(1 - k*x)). This recurrence gives the closed form b(n) = k*(k^n - (-1)^n)/(k + 1).

Examples

			a(2) = 7^2 - a(2-1) = 49 - 7 = 42.
a(4) = 7^4 - a(4-1) = 2401 - 301 = 2100.
		

Crossrefs

Cf. similar sequences with the recurrence b(n) = k^n - b(n-1): A125122 (k=1), A078008 (k=2), A054878 (k=3), A109499 (k=4), A109500 (k=5), A109501 (k=6), this sequence (k=7), A093134 (k=8), A001099 (k=n).

Programs

  • Mathematica
    LinearRecurrence[{6, 7}, {0, 7}, 30]
    Table[7 (7^n - (-1)^n)/8, {n, 0, 30}]
  • PARI
    vector(50, n, n--; 7*(7^n-(-1)^n)/8) \\ Altug Alkan, Apr 13 2016
    
  • Python
    for n in range(0,10**2):print((int)((7*(7**n-(-1)**n))/8))
    # Soumil Mandal, Apr 14 2016

Formula

O.g.f.: 7*x/(1 - 6*x - 7*x^2).
E.g.f.: (7/8)*(exp(7*x) - exp(-x)).
a(n) = 6*a(n-1) + 7*a(n-2).
a(n) = 7*(7^n - (-1)^n)/8.
a(n) = 7*A015552(n).
Sum_{n>0} 1/(a(n) + a(n-1)) = 1/6 = A020793.
Limit_{n->oo} a(n-1)/a(n) = 1/7 = A020806.
Previous Showing 11-16 of 16 results.