cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 1731 results. Next

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A299200 Number of twice-partitions whose domain is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 15, 4, 22, 3, 10, 7, 30, 2, 9, 11, 8, 5, 42, 6, 56, 1, 14, 15, 15, 4, 77, 22, 22, 3, 101, 10, 135, 7, 12, 30, 176, 2, 25, 9, 30, 11, 231, 8, 21, 5, 44, 42, 297, 6, 385, 56, 20, 1, 33, 14, 490, 15, 60, 15, 627, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11).
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..82);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsP[PrimePi[p]]^k],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1]));); factorback(f);} \\ Michel Marcus, Feb 26 2018

Formula

Multiplicative with a(prime(n)) = A000041(n).

A304038 Irregular triangle T(n,k) read by rows: first row is 0, n-th row (n > 1) lists indices of distinct primes dividing n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 2, 4, 1, 2, 1, 3, 5, 1, 2, 6, 1, 4, 2, 3, 1, 7, 1, 2, 8, 1, 3, 2, 4, 1, 5, 9, 1, 2, 3, 1, 6, 2, 1, 4, 10, 1, 2, 3, 11, 1, 2, 5, 1, 7, 3, 4, 1, 2, 12, 1, 8, 2, 6, 1, 3, 13, 1, 2, 4, 14, 1, 5, 2, 3, 1, 9, 15, 1, 2, 4, 1, 3, 2, 7, 1, 6, 16, 1, 2, 3, 5, 1, 4, 2, 8, 1, 10, 17, 1, 2, 3, 18, 1, 11
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			The irregular triangle begins:
1:  {0}
2:  {1}
3:  {2}
4:  {1}
5:  {3}
6:  {1, 2}
7:  {4}
8:  {1}
9:  {2}
10: {1, 3}
11: {5}
12: {1, 2}
		

Crossrefs

Cf. A000040, A000720, A001221 (row lengths), A027748, A055396, A061395, A066328 (row sums), A112798, A156061 (row products), A302170.

Programs

  • Mathematica
    Flatten[Table[PrimePi[FactorInteger[n][[All, 1]]], {n, 1, 62}]]

Formula

T(n,k) = A000720(A027748(n,k)).
T(n,1) = A055396(n).
T(n,A001221(n)) = A061395(n).

A304465 If n is prime, set a(n) = 1. Otherwise, start with the multiset of prime factors of n, and given a multiset take the multiset of its multiplicities. Repeating this until a multiset of size 1 is reached, set a(n) to the unique element of this multiset.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 13 2018

Keywords

Comments

a(1) = 0 by convention.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 08 2018

Examples

			Starting with the multiset of prime factors of 2520 we have {2,2,2,3,3,5,7} -> {1,1,2,3} -> {1,1,2} -> {1,2} -> {1,1} -> {2}, so a(2520) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Switch[n,1,0,?PrimeQ,1,,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Length[#]>1&]//First],{n,100}]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A304465(n) = if(1==n,0,my(t=isprimepower(n)); if(t,t, t=omega(n); if(bigomega(n)==t),t,A304465(A181819(n)))); \\ Antti Karttunen, Nov 08 2018

Formula

a(p^n) = n where p is any prime number.
a(product of n distinct primes) = n.
a(1) = 0; and for n > 1, if n = prime^k, a(n) = k, otherwise, if n is squarefree [i.e., A001221(n) = A001222(n)], a(n) = A001221(n), otherwise a(n) = a(A181819(n)). - Antti Karttunen, Nov 08 2018

Extensions

More terms from Antti Karttunen, Nov 08 2018

A300063 Heinz numbers of integer partitions of odd numbers.

Original entry on oeis.org

2, 5, 6, 8, 11, 14, 15, 17, 18, 20, 23, 24, 26, 31, 32, 33, 35, 38, 41, 42, 44, 45, 47, 50, 51, 54, 56, 58, 59, 60, 65, 67, 68, 69, 72, 73, 74, 77, 78, 80, 83, 86, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 109, 110, 114, 119, 122, 123, 124, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			15 is the Heinz number of (3,2), which has odd weight, so 15 belongs to the sequence.
Sequence of odd-weight partitions begins: (1) (3) (2,1) (1,1,1) (5) (4,1) (3,2) (7) (2,2,1) (3,1,1) (9) (2,1,1,1) (6,1).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 0, a(n-1)) while add(numtheory[pi]
          (i[1])*i[2], i=ifactors(k)[2])::even do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 22 2018
  • Mathematica
    Select[Range[200],OddQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&]

A296188 Number of normal semistandard Young tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 8, 1, 6, 12, 16, 6, 32, 32, 28, 1, 64, 16, 128, 24, 96, 80, 256, 8, 44, 192, 22, 80, 512, 96, 1024, 1, 288, 448, 224, 30, 2048, 1024, 800, 40, 4096, 400, 8192, 240, 168, 2304, 16384, 10, 360, 204, 2112, 672, 32768, 68, 832, 160, 5376, 5120
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2018

Keywords

Comments

A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(9) = 6 tableaux:
1 3   1 2   1 2   1 2   1 1   1 1
2 4   3 4   3 3   2 3   2 3   2 2
		

References

  • Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.10.

Crossrefs

Programs

  • Mathematica
    conj[y_List]:=If[Length[y]===0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    conj[n_Integer]:=Times@@Prime/@conj[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ssyt[n_]:=If[n===1,1,Sum[ssyt[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Rest[Divisors[n]]}]];
    Table[ssyt[conj[n]],{n,50}]

Formula

Let b(n) = Sum_{d|n, d>1} b(n * d' / d) where if d = Product_i prime(s_i)^m(i) then d' = Product_i prime(s_i - 1)^m(i) and prime(0) = 1. Then a(n) = b(conj(n)) where conj = A122111.

A325351 Heinz number of the augmented differences of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 6, 10, 11, 12, 13, 14, 9, 16, 17, 12, 19, 20, 15, 22, 23, 24, 10, 26, 12, 28, 29, 18, 31, 32, 21, 34, 15, 24, 37, 38, 33, 40, 41, 30, 43, 44, 18, 46, 47, 48, 14, 20, 39, 52, 53, 24, 25, 56, 51, 58, 59, 36, 61, 62, 30, 64, 35, 42, 67, 68, 57, 30, 71, 48, 73, 74, 18, 76, 21, 66, 79, 80, 24, 82, 83, 60, 55, 86, 69, 88, 89, 36, 35
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Note that aug preserves length so this sequence preserves omega (number of prime factors counted with multiplicity).

Examples

			The partition (3,2,2,1) with Heinz number 90 has augmented differences (2,1,2,1) with Heinz number 36, so a(90) = 36.
		

Crossrefs

Number of appearances of n is A008480(n).

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
  • PARI
    augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
    A325351(n) = factorback(apply(prime,augdiffs(n))); \\ Antti Karttunen, Nov 16 2019

Extensions

More terms from Antti Karttunen, Nov 16 2019

A276078 Numbers n in whose prime factorization no exponent of any prime(k) exceeds k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

Numbers not divisible by p^(1+A000720(p)) for any prime p, where A000720(p) gives the index of prime p: 1 for 2, 2 for 3, 3 for 5, and so on.
Also Heinz numbers of integer partitions where the multiplicity of i does not exceed i for any i (A052335). Differs from A048103 in lacking {625, 1250, 1875, 3750, 4375, 5625, 6875, 8125, 8750, ...}. - Gus Wiseman, Mar 09 2019
Asymptotic density is Product_{i>=1} 1-prime(i)^(-1-i) = 0.72102334... - Amiram Eldar, Oct 20 2020

Crossrefs

Positions of zeros in A276077.
Complement: A276079.
Sequence A276076 sorted into ascending order.
Subsequence of A048103 from which it differs for the first time at n=451, where a(451) = 626, while A048103(451) = 625, a value missing from here.

Programs

  • Mathematica
    Select[Range@ 121, Or[# == 1, AllTrue[FactorInteger[#], PrimePi[#1] >= #2 & @@ # &]] &] (* Michael De Vlieger, Jun 24 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > primepi(f[k, 1]), return(0))); return (1); \\ Michel Marcus, Jun 24 2017
    
  • PARI
    is(n) = {my(t=1);forprime(p = 2, , t++; pp = p^t; if(n%pp==0, return(0)); if(pp > n, return(1)))} \\ David A. Corneth, Jun 24 2017
    
  • PARI
    upto(n) = {my(v = vector(n,i,1), t=1, res=List()); forprime(p=2, , t++; pp = p^t; if(pp>n, break); for(i=1, n\pp, v[pp*i] = 0)); for(i=1, n, if(v[i]==1, listput(res, i))); res} \\ David A. Corneth, Jun 24 2017
  • Python
    from sympy import factorint, primepi
    def ok(n):
        f = factorint(n)
        return all(f[i] <= primepi(i) for i in f)
    print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Jun 24 2017
    

A355732 Least k such that there are exactly n ways to choose a sequence of divisors, one of each element of the multiset of prime indices of k (with multiplicity).

Original entry on oeis.org

1, 3, 7, 9, 53, 21, 311, 27, 49, 159, 8161, 63, 38873, 933, 371, 81, 147, 477, 2177, 24483, 189, 2809, 343, 2799, 1113, 243, 57127, 16483, 441, 1431, 6531, 73449, 2597, 567, 96721, 8427, 1029, 8397, 3339, 15239, 729, 49449, 1323, 19663, 4293, 2401, 19593, 7791
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355731.
Appears to be a subset of A353397.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      1: {}
      3: {2}
      7: {4}
      9: {2,2}
     53: {16}
     21: {2,4}
    311: {64}
     27: {2,2,2}
     49: {4,4}
    159: {2,16}
   8161: {1024}
     63: {2,2,4}
For example, the choices for a(12) = 63 are:
  (1,1,1)  (1,2,2)  (2,1,4)
  (1,1,2)  (1,2,4)  (2,2,1)
  (1,1,4)  (2,1,1)  (2,2,2)
  (1,2,1)  (2,1,2)  (2,2,4)
		

Crossrefs

Positions of first appearances in A355731.
Counting distinct sequences after sorting: A355734, firsts of A355733.
Requiring the result to be weakly increasing: A355736, firsts of A355735.
Requiring the result to be relatively prime: A355738, firsts of A355737.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Times@@Length/@Divisors/@primeMS[n],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A368110 Numbers of which it is possible to choose a different divisor of each prime index.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By Hall's marriage theorem, k is a term if and only if there is no sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, there is no divisor of k in A370348. - Robert Israel, Feb 15 2024

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  29: {10}
  30: {1,2,3}
		

Crossrefs

Partitions of this type are counted by A239312, complement A370320.
Positions of nonzero terms in A355739.
Complement of A355740.
For just prime divisors we have A368100, complement A355529 (odd A355535).
A000005 counts divisors.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Maple
    filter:= proc(n) uses numtheory, GraphTheory; local B,S,F,D,E,G,t,d;
      F:= ifactors(n)[2];
      F:= map(t -> [pi(t[1]),t[2]], F);
      D:= `union`(seq(divisors(t[1]), t = F));
      F:= map(proc(t) local i;seq([t[1],i],i=1..t[2]) end proc,F);
      if nops(D) < nops(F) then return false fi;
      E:= {seq(seq({t,d},d=divisors(t[1])),t = F)};
      S:= map(t -> convert(t,name), [op(F),op(D)]);
      E:= map(e -> map(convert,e,name),E);
      G:= Graph(S,E);
      B:= BipartiteMatching(G);
      B[1] = nops(F);
    end proc:
    select(filter, [$1..100]); # Robert Israel, Feb 15 2024
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]!={}&]

Formula

Heinz numbers of the partitions counted by A239312.
Previous Showing 101-110 of 1731 results. Next