cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 82 results. Next

A352822 Number of fixed points y(i) = i, where y is the weakly increasing sequence of prime indices of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6500 are {1,1,3,3,3,6} with fixed points at positions {1,3,6}, so a(6500) = 3.
		

Crossrefs

* = unproved
Positions of first appearances are A002110.
The triangle version is A238352.
Positions of 0's are A352830, counted by A238394.
Positions of 1's are A352831, counted by A352832.
A version for compositions is A352512, complement A352513, triangle A238349.
The complement is A352823.
The reverse version is A352824, complement A352825.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A115720 and A115994 count partitions by their Durfee square.
A238395 counts reversed partitions with a fixed point, ranked by A352872.

Programs

  • Maple
    f:= proc(n) local F,J,t;
      F:= sort(ifactors(n)[2],(s,t) -> s[1] numtheory:-pi(t[1])$t[2], F);
      nops(select(t -> J[t]=t, [$1..nops(J)]));
    end proc:
    map(f, [$1..200]); # Robert Israel, Apr 11 2023
  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[pq[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{n,100}]
  • PARI
    A352822(n) = { my(f=factor(n),i=0,c=0); for(k=1,#f~,while(f[k,2], f[k,2]--; i++; c += (i==primepi(f[k,1])))); (c); }; \\ Antti Karttunen, Apr 11 2022

Formula

a(n) = A001222(n) - A352823(n). - Antti Karttunen, Apr 11 2022

Extensions

Data section extended up to 105 terms by Antti Karttunen, Apr 11 2022

A352827 Heinz numbers of integer partitions y with a fixed point y(i) = i. Such a fixed point is unique if it exists.

Original entry on oeis.org

2, 4, 8, 9, 15, 16, 18, 21, 27, 30, 32, 33, 36, 39, 42, 45, 51, 54, 57, 60, 63, 64, 66, 69, 72, 78, 81, 84, 87, 90, 93, 99, 102, 108, 111, 114, 117, 120, 123, 125, 126, 128, 129, 132, 135, 138, 141, 144, 153, 156, 159, 162, 168, 171, 174, 175, 177, 180, 183
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: (1)
    4: (1,1)
    8: (1,1,1)
    9: (2,2)
   15: (3,2)
   16: (1,1,1,1)
   18: (2,2,1)
   21: (4,2)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   33: (5,2)
   36: (2,2,1,1)
   39: (6,2)
   42: (4,2,1)
   45: (3,2,2)
   51: (7,2)
   54: (2,2,2,1)
For example, the partition (3,2,2) with Heinz number 45 has a fixed point at position 2, so 45 is in the sequence.
		

Crossrefs

* = unproved
*These partitions are counted by A001522, strict A352829.
*The complement is A352826, counted by A064428.
The complement reverse version is A352830, counted by A238394.
The reverse version is A352872, counted by A238395
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, unfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352828 counts strict partitions without a fixed point.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==1&]

A297113 a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 3, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 4, 4, 5, 9, 4, 4, 6, 4, 5, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 5, 13, 4, 14, 6, 4, 9, 15, 5, 5, 4, 7, 7, 16, 4, 5, 6, 8, 10, 17, 4, 18, 11, 5, 6, 6, 5, 19, 8, 9, 4, 20, 5, 21, 12, 4, 9, 5, 6, 22, 6, 5, 13, 23, 5, 7, 14, 10, 7, 24, 4, 6, 10, 11, 15, 8, 6, 25
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2017

Keywords

Comments

From Gus Wiseman, Apr 06 2019: (Start)
Also the number of squares in the Young diagram of the integer partition with Heinz number n that are graph-distance 1 from the lower-right boundary, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (6,5,5,3) with Heinz number 7865 has diagram
o o o o o o
o o o o o
o o o o o
o o o
with inner rim
o
o
o o
o o o
of size 7, so a(7867) = 7.
(End)

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,PrimePi[FactorInteger[n][[-1,1]]]+PrimeOmega[n]-PrimeNu[n]],{n,100}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A297113(n) = if(n<=2,n-1,if(n%2,1+A297113(A064989(n)), !(n%4)+A297113(n/2)));
    
  • PARI
    \\ More complex way, after Moebius transform:
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A297112(n) = sumdiv(n,d,moebius(n/d)*A156552(d));
    A297113(n) = if(1==n,0,1+valuation(A297112(n),2));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A297113 n) (cond ((<= n 2) (- n 1)) ((= 2 (modulo n 4)) (A297113 (/ n 2))) (else (+ 1 (A297113 (A252463 n))))))

Formula

a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)) .
For n > 1, a(n) = A001511(A297112(n)), where A297112(n) = Sum_{d|n} moebius(n/d)*A156552(d).
a(n) = A252464(n) - A297155(n).
For n > 1, a(n) = 1+A033265(A156552(n)) = 1+A297167(n) = A046660(n) + A061395(n). - Last two sums added by Antti Karttunen, Sep 02 2018
Other identities. For all n >= 1:
a(A000040(n)) = n. [Each n occurs for the first time at the n-th prime.]

A352523 Number of integer compositions of n with exactly k nonfixed points (parts not on the diagonal).

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 4, 2, 2, 0, 0, 5, 5, 4, 2, 0, 1, 3, 12, 8, 6, 2, 0, 0, 7, 14, 19, 14, 8, 2, 0, 0, 8, 21, 33, 32, 22, 10, 2, 0, 0, 9, 30, 54, 63, 54, 32, 12, 2, 0, 1, 6, 47, 80, 116, 116, 86, 44, 14, 2, 0, 0, 11, 53, 129, 194, 229, 202, 130, 58, 16, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

A nonfixed point in a composition c is an index i such that c_i != i.

Examples

			Triangle begins:
   1
   1   0
   0   2   0
   1   1   2   0
   0   4   2   2   0
   0   5   5   4   2   0
   1   3  12   8   6   2   0
   0   7  14  19  14   8   2   0
   0   8  21  33  32  22  10   2   0
   0   9  30  54  63  54  32  12   2   0
   1   6  47  80 116 116  86  44  14   2   0
   ...
For example, row n = 6 counts the following compositions (empty column indicated by dot):
  (123)  (6)   (24)    (231)    (2112)   (21111)    .
         (15)  (33)    (312)    (2121)   (111111)
         (42)  (51)    (411)    (3111)
               (114)   (1113)   (11112)
               (132)   (1122)   (11121)
               (141)   (1311)   (11211)
               (213)   (2211)
               (222)   (12111)
               (321)
               (1131)
               (1212)
               (1221)
		

Crossrefs

Column k = 0 is A010054.
Row sums are A011782.
The version for permutations is A098825.
The corresponding rank statistic is A352513.
Column k = 1 is A352520.
A238349 and A238350 count comps by fixed points, first col A238351, rank stat A352512.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add(`if`(i=j, 1, x)*b(n-j, i+1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 19 2025
  • Mathematica
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pnq[#]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= sum(i=0, N, prod(j=1, i, y*(x/(1-x)-x^j)+x^j))); vector(N, n, my(r=Vecrev(polcoeff(h, n-1))); if(n<2, r, concat(r,[0])))}
    T_xy(10) \\ John Tyler Rascoe, Mar 21 2025

Formula

G.f.: Sum_{i>=0} Product_{j=1..i} y*(x/(1-x) - x^j) + x^j. - John Tyler Rascoe, Mar 19 2025

A188674 Stack polyominoes with square core.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)

Crossrefs

Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
    (* second program *)
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)

Formula

G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).

A117485 Expansion of x^9/((1-x)*(1-x^2)*(1-x^3))^2.

Original entry on oeis.org

1, 2, 5, 10, 18, 30, 49, 74, 110, 158, 221, 302, 407, 536, 698, 896, 1136, 1424, 1770, 2176, 2656, 3216, 3866, 4616, 5481, 6466, 7591, 8866, 10306, 11926, 13747, 15778, 18046, 20566, 23359, 26446, 29855, 33600, 37716, 42224, 47152, 52528, 58388, 64752, 71664
Offset: 9

Views

Author

Alford Arnold, Mar 22 2006

Keywords

Comments

Molien series for S_3 X S_3, cf. A001399.
From Gus Wiseman, Apr 06 2019: (Start)
Also the number of integer partitions of n with Durfee square of length 3. The Heinz numbers of these partitions are given by A307386. For example, the a(9) = 1 through a(13) = 18 partitions are:
(333) (433) (443) (444) (544)
(3331) (533) (543) (553)
(3332) (633) (643)
(4331) (3333) (733)
(33311) (4332) (4333)
(4431) (4432)
(5331) (4441)
(33321) (5332)
(43311) (5431)
(333111) (6331)
(33322)
(33331)
(43321)
(44311)
(53311)
(333211)
(433111)
(3331111)
(End)

Examples

			As a cross-check, row sixteen of A115994 yields p(16) = 16 + 140 + 74 + 1.
		

Crossrefs

Column k=3 of A115994.
Cf. A000027 (for k=1), A006918 (for k=2), A117488, A117489, A001399, A117486.

Programs

  • Magma
    n:=3; G:=SymmetricGroup(n); H:=DirectProduct(G,G); MolienSeries(H); // N. J. A. Sloane, Mar 10 2007
    
  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=3, stack): seq(count(subs(r=3, ZL), size=m), m=6..50) ; # Zerinvary Lajos, Jan 02 2008
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3))^2,{x,0,50}],x] (* Harvey P. Dale, Oct 09 2011 *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==3&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    Vec(x^9 / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Dec 12 2019
    
  • PARI
    a(n) = floor((3*n^5 - 45*n^4 + 200*n^3 - 180*n^2 - 363*n + 1600)/12960 + n/27*(n%3==0) - n/32*(n%2==0)) \\ Hoang Xuan Thanh, Jul 17 2025

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>20. - Colin Barker, Dec 12 2019
From Hoang Xuan Thanh, May 17 2025: (Start)
a(n+3) = Sum_{x+2*y+3*z=n} x*y*z.
a(n+3) = n*(n^2-1)*(3*n^2-67)/12960 - floor((n+1)/3)/27 + [n mod 2 = 0]*n/32 + [n mod 3 = 0]*n/27 where [] is the Iverson bracket. (End)

Extensions

Entry revised by N. J. A. Sloane, Mar 10 2007

A352512 Number of fixed points in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 1, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.
A fixed point of composition c is an index i such that c_i = i.

Examples

			The 169th composition in standard order is (2,2,3,1), with fixed points {2,3}, so a(169) = 2.
		

Crossrefs

The version counting permutations is A008290, unfixed A098825.
The triangular version is A238349, first column A238351.
Unfixed points are counted by A352513, triangle A352523, first A352520.
A011782 counts compositions.
A088902 gives the fixed points of A122111, counted by A000700.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[pq[stc[n]],{n,0,100}]

Formula

A000120(n) = A352512(n) + A352513(n).

A352525 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k weak excedances (parts on or above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 3, 8, 8, 14, 17, 1, 25, 35, 4, 46, 70, 12, 87, 137, 32, 167, 268, 76, 1, 324, 525, 170, 5, 634, 1030, 367, 17, 1248, 2026, 773, 49, 2466, 3999, 1598, 129, 4887, 7914, 3267, 315, 1, 9706, 15695, 6631, 730, 6, 19308, 31181, 13393, 1631, 23
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
     1
     1
     2
     3     1
     5     3
     8     8
    14    17     1
    25    35     4
    46    70    12
    87   137    32
   167   268    76     1
   324   525   170     5
For example, row n = 6 counts the following compositions:
  (6)       (15)     (123)
  (51)      (24)
  (312)     (33)
  (411)     (42)
  (1113)    (114)
  (1122)    (132)
  (2112)    (141)
  (2121)    (213)
  (3111)    (222)
  (11112)   (231)
  (11121)   (321)
  (11211)   (1131)
  (21111)   (1212)
  (111111)  (1221)
            (1311)
            (2211)
            (12111)
		

Crossrefs

Row sums are A011782.
The version for partitions is A115994.
The version for permutations is A123125, strong A173018.
Column k = 1 is A177510.
The corresponding rank statistic is A352517.
The strong opposite is A352521, first col A219282, rank statistic A352514.
The opposite version is A352522, first col A238874, rank statistic A352515.
The strong version is A352524, first column A008930, rank statistic A352516.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352489 lists the weak excedance set of A122111.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]];
    DeleteCases[Table[Length[Select[Join@@ Permutations/@IntegerPartitions[n],pdw[#]==k&]],{n,0,10},{k,0,n}],0,{2}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k<=i,x,1)*v[j-i])); r+=v); r[1]=x; [Vecrev(p) | p<-r/x]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

A352826 Heinz numbers of integer partitions y without a fixed point y(i) = i. Such a fixed point is unique if it exists.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()          24: (2,1,1,1)     47: (15)
      3: (2)         25: (3,3)         48: (2,1,1,1,1)
      5: (3)         26: (6,1)         49: (4,4)
      6: (2,1)       28: (4,1,1)       50: (3,3,1)
      7: (4)         29: (10)          52: (6,1,1)
     10: (3,1)       31: (11)          53: (16)
     11: (5)         34: (7,1)         55: (5,3)
     12: (2,1,1)     35: (4,3)         56: (4,1,1,1)
     13: (6)         37: (12)          58: (10,1)
     14: (4,1)       38: (8,1)         59: (17)
     17: (7)         40: (3,1,1,1)     61: (18)
     19: (8)         41: (13)          62: (11,1)
     20: (3,1,1)     43: (14)          65: (6,3)
     22: (5,1)       44: (5,1,1)       67: (19)
     23: (9)         46: (9,1)         68: (7,1,1)
		

Crossrefs

* = unproved
*These partitions are counted by A064428, strict A352828.
The complement is A352827.
The reverse version is A352830, counted by A238394.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==0&]

A352513 Number of nonfixed points in the n-th composition in standard order.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 0, 2, 1, 2, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 2, 3, 4, 1, 2, 1, 2, 1, 3, 3, 4, 1, 2, 1, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 4, 4, 5, 1, 2, 2, 3, 0, 2, 2, 3, 2, 2, 3, 4, 3, 4, 4, 5, 1, 2, 1, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 4, 4, 5, 2, 3, 3, 4, 1, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.
A nonfixed point in a composition c is an index i such that c_i != i.

Examples

			The 169th composition in standard order is (2,2,3,1), with nonfixed points {1,4}, so a(169) = 2.
		

Crossrefs

The version counting permutations is A098825, fixed A008290.
Fixed points are counted by A352512, triangle A238349, first A238351.
The triangular version is A352523, first nontrivial column A352520.
A011782 counts compositions.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[pnq[stc[n]],{n,0,100}]

Formula

A000120(n) = A352512(n) + A352513(n).
Previous Showing 11-20 of 82 results. Next