cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A147874 a(n) = (5*n-7)*(n-1).

Original entry on oeis.org

0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035
Offset: 1

Views

Author

Keywords

Comments

Zero followed by partial sums of A017305.
Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1.
Even dodecagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011

Crossrefs

Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)), A294830.
Cf. A051624, A193872. - Omar E. Pol, Aug 19 2011

Programs

  • GAP
    List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
  • Magma
    [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
    
  • Magma
    [ 5*n^2-2*n: n in [0..50] ];
    
  • Mathematica
    s=0;lst={s};Do[s+=n++ +3;AppendTo[lst,s],{n,0,6!,10}];lst
    Table[5n^2-12n+7,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,3,16},50] (* or *) PolygonalNumber[12,Range[0,100,2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ","))} \\ Klaus Brockhaus, Nov 17 2008
    
  • Sage
    [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
    

Formula

a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).
G.f.: x*(3 + 7*x)/(1-x)^3.
a(n) = 10*(n-2) + 3 + a(n-1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011
a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013
E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019
Sum_{n>=2} 1/a(n) = A294830. - Amiram Eldar, Nov 15 2020
a(n) = A014105(n-1) + 3*A002378(n-2). - Leo Tavares, Mar 31 2025

Extensions

Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008

A056838 a(n) = floor(n^2/9).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 7, 9, 11, 13, 16, 18, 21, 25, 28, 32, 36, 40, 44, 49, 53, 58, 64, 69, 75, 81, 87, 93, 100, 106, 113, 121, 128, 136, 144, 152, 160, 169, 177, 186, 196, 205, 215, 225, 235, 245, 256, 266, 277, 289, 300, 312, 324, 336, 348
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Range[0, 100]^2/9] (* Paolo Xausa, Aug 21 2024 *)

Formula

G.f.: x^3*(1+x)*(x^2-x+1)^2/((1-x)^3*(1+x+x^2)(x^6+x^3+1)). [R. J. Mathar, Jan 05 2009]

A118013 Triangle read by rows: T(n,k) = floor(n^2/k), 1<=k<=n.

Original entry on oeis.org

1, 4, 2, 9, 4, 3, 16, 8, 5, 4, 25, 12, 8, 6, 5, 36, 18, 12, 9, 7, 6, 49, 24, 16, 12, 9, 8, 7, 64, 32, 21, 16, 12, 10, 9, 8, 81, 40, 27, 20, 16, 13, 11, 10, 9, 100, 50, 33, 25, 20, 16, 14, 12, 11, 10, 121, 60, 40, 30, 24, 20, 17, 15, 13, 12, 11, 144, 72, 48, 36, 28, 24, 20, 18, 16, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2006

Keywords

Comments

T(n,1) = A000290(n); T(n,n) = n;
T(n,2) = A007590(n) for n>1;
T(n,3) = A000212(n) for n>2;
T(n,4) = A002620(n) for n>3;
T(n,5) = A118015(n) for n>4;
T(n,6) = A056827(n) for n>5;
central terms give A008574: T(2*k-1,k) = 4*(k-1)+0^(k-1);
row sums give A118014.

Examples

			Triangle begins:
1,
4, 2,
9, 4, 3,
16, 8, 5, 4,
		

Crossrefs

Cf. A010766.

Programs

  • Haskell
    a118013 n k = a118013_tabl !! (n-1) !! (k-1)
    a118013_row n = map (div (n^2)) [1..n]
    a118013_tabl = map a118013_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
  • PARI
    T(n,k)=n^2\k \\ Charles R Greathouse IV, Jan 15 2012
    

A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 4, 2, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 49, 24, 16, 12, 9, 8, 7, 6
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
4, 2, 1, 1;
9, 4, 3, 2, 1, 1, 1, 1, 1;
16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. Related triangles: A010766, A277647, A277648.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033324(k),
T(3,k) = A033329(k),
T(4,k) = A033336(k),
T(5,k) = A033345(k),
T(6,k) = A033356(k),
T(7,k) = A033369(k),
T(8,k) = A033384(k),
T(9,k) = A033401(k),
T(10,k) = A033420(k),
T(100,k) = A033422(k),
T(10^3,k) = A033426(k),
T(10^4,k) = A033424(k).
Columns of this triangle:
T(n,1) = A000290(n),
T(n,2) = A007590(n),
T(n,3) = A000212(n),
T(n,4) = A002620(n),
T(n,5) = A118015(n),
T(n,6) = A056827(n),
T(n,7) = A056834(n),
T(n,8) = A130519(n+1),
T(n,9) = A056838(n),
T(n,10)= A056865(n),
T(n,12)= A174709(n+2).

Programs

  • Magma
    A277646:=func;
    [A277646(n,k):k in[1..n^2],n in[1..7]];
  • Mathematica
    Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A010766(n^2,k).

A194222 a(n) = floor(Sum_{k=1..n} frac(k/5)), where frac() = fractional part.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 22, 22, 22, 22, 23, 24, 24, 24, 24, 25, 26, 26, 26, 26, 27, 28, 28, 28, 28, 29, 30
Offset: 1

Views

Author

Clark Kimberling, Aug 19 2011

Keywords

Crossrefs

Cf. A118015.

Programs

  • Maple
    seq(floor((n+1)/5)+floor((n+2)/5), n=1..80); # Ridouane Oudra, Dec 14 2021
  • Mathematica
    r = 1/5;
    a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
    Table[a[n], {n, 1, 90}]    (* A194222 *)
    s[n_] := Sum[a[k], {k, 1, n}]
    Table[s[n], {n, 1, 100}]   (* A118015 *)
    LinearRecurrence[{1,0,0,0,1,-1},{0,0,1,2,2,2},80] (* Harvey P. Dale, Jun 06 2024 *)

Formula

From Chai Wah Wu, Jun 10 2020: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^3*(x + 1)/((x-1)^2*(1+x+x^2+x^3+x^4)). (End)
a(n) = floor((n+1)/5) + floor((n+2)/5). - Ridouane Oudra, Dec 14 2021
a(n) = A002266(n+1)+A002266(n+2). - R. J. Mathar, Nov 21 2023

A279169 a(n) = floor( 4*n^2/5 ).

Original entry on oeis.org

0, 0, 3, 7, 12, 20, 28, 39, 51, 64, 80, 96, 115, 135, 156, 180, 204, 231, 259, 288, 320, 352, 387, 423, 460, 500, 540, 583, 627, 672, 720, 768, 819, 871, 924, 980, 1036, 1095, 1155, 1216, 1280, 1344, 1411, 1479, 1548, 1620, 1692, 1767, 1843, 1920, 2000, 2080, 2163, 2247
Offset: 0

Views

Author

Bruno Berselli, Dec 07 2016

Keywords

Crossrefs

Cf. A090223: floor(4*n/5).
Subsequence of A008728, A014601, A118015, A131242.
Cf. similar sequences with closed form floor(k*n^2/5): A118015 (k=1), A033437 (k=2), A184535 (k=3).

Programs

  • Magma
    [4*n^2 div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n^2/5], {n, 0, 60}]
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,3,7,12,20,28},60] (* Harvey P. Dale, Nov 07 2020 *)
  • PARI
    vector(60, n, n--; floor(4*n^2/5))
    
  • Python
    [int(4*n**2/5) for n in range(60)]
    
  • Sage
    [floor(4*n^2/5) for n in range(60)]
    

Formula

O.g.f.: x^2*(3 + x + x^2 + 3*x^3)/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
a(5*m+r) = 4*m*(5*m + 2*r) + a(r), where m >= 0 and 0 <= r < 5. Example: for m=4 and r=3, a(5*4+3) = a(23) = 4*4*(5*4 + 2*3) + a(3) = 416 + 7 = 423.
a(n) = A118015(2*n) = A008728(4*n+2) = A131242(4*n+4) = A014601(floor(2*n^2/5)).
Sum_{n>=2} 1/a(n) = Pi^2/120 + sqrt(29 - 62/sqrt(5))*Pi/8 + 5/16. - Amiram Eldar, Sep 26 2022

A194200 [sum{(k*e) : 1<=k<=n}], where [ ]=floor, ( )=fractional part.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 22, 22, 22, 23, 23, 23, 24, 25, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 34, 35, 36, 37
Offset: 1

Views

Author

Clark Kimberling, Aug 19 2011

Keywords

Comments

The defining [sum] is equivalent to
...
a(n)=[n(n+1)r/2]-sum{[k*r] : 1<=k<=n},
...
where []=floor and r=sqrt(2). Let s(n) denote the n-th partial sum of the sequence a; then the difference sequence d defined by d(n)=s(n+1)-s(n) gives the runlengths of a.
...
Examples:
...
r...........a........s....
1/2......A002265...A001972
1/3......A002264...A001840
2/3......A002264...A001840
1/4......A194220...A194221
1/5......A194222...A118015
2/5......A057354...A011858
3/5......A194222...A118015
4/5......A057354...A011858
1/6......A194223...A194224
3/7......A057357...A194229
1/8......A194235...A194236
3/8......A194237...A194238
sqrt(2)..A194161...A194162
sqrt(3)..A194163...A194164
sqrt(5)..A194169...A194170
sqrt(6)..A194173...A194174
tau......A194165...A194166; tau=(1+sqrt(5))/2
e........A194200...A194201
2e.......A194202...A194203
e/2......A194204...A194205
pi.......A194206...A194207

Examples

			a(5)=[(e)+(2e)+(3e)+4(e)+5(e)]
    =[.718+.436+.154+.873+.591]
    =[2.77423]=2.
		

Crossrefs

Cf. A194201.

Programs

  • Mathematica
    r = E;
    a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
    Table[a[n], {n, 1, 90}]  (* A194200 *)
    s[n_] := Sum[a[k], {k, 1, n}]
    Table[s[n], {n, 1, 100}] (* A194201 *)

A126696 Tenth-squares: floor(n/10)*ceiling(n/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 20, 20, 20, 20, 20, 20, 20, 20, 20, 25, 30, 30, 30, 30, 30, 30, 30, 30, 30, 36, 42, 42, 42, 42, 42, 42, 42, 42, 42, 49, 56, 56, 56, 56, 56, 56, 56, 56, 56
Offset: 0

Views

Author

Jonathan Vos Post, May 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [ Floor(n/10)*Ceiling(n/10) : n in [0..100]];
  • Mathematica
    f[n_]:=Module[{c=n/10},Floor[c]Ceiling[c]];f[Range[0,90]] (* Harvey P. Dale, Apr 04 2011 *)

Formula

Equivalently, floor(n^2/100).
Previous Showing 11-18 of 18 results.