cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A098850 a(n) = n*(n + 18).

Original entry on oeis.org

0, 19, 40, 63, 88, 115, 144, 175, 208, 243, 280, 319, 360, 403, 448, 495, 544, 595, 648, 703, 760, 819, 880, 943, 1008, 1075, 1144, 1215, 1288, 1363, 1440, 1519, 1600, 1683, 1768, 1855, 1944, 2035, 2128, 2223, 2320, 2419, 2520, 2623, 2728, 2835, 2944, 3055
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Crossrefs

a(n-9), n>=10, ninth column (used for the n=9 series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+9)^2 - 9^2 = n*(n + 18), n>=0.
G.f.: x*(19 - 17*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 17 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(19 + x)*exp(x). (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(18)/18 = A001008(18)/A102928(18) = 14274301/73513440, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1632341/44108064. (End)

Extensions

More terms from Emeric Deutsch, Mar 06 2005

A120071 a(n) = n*(n+20).

Original entry on oeis.org

0, 21, 44, 69, 96, 125, 156, 189, 224, 261, 300, 341, 384, 429, 476, 525, 576, 629, 684, 741, 800, 861, 924, 989, 1056, 1125, 1196, 1269, 1344, 1421, 1500, 1581, 1664, 1749, 1836, 1925, 2016, 2109, 2204, 2301, 2400, 2501, 2604, 2709, 2816, 2925, 3036, 3149, 3264
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Crossrefs

a(n-10), n >= 11, tenth column (used for the n=10 series of the hydrogen atom) of triangle A120070.
For n*(n+18) see A098850.

Programs

Formula

a(n) = (n+10)^2 - 10^2 = n*(n+20), n >= 0.
G.f.: x*(21-19*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 19 (with a(0)=0). - Vincenzo Librandi, Nov 13 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(20)/20 = A001008(20)/A102928(20) = 11167027/62078016, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 155685007/4655851200. (End)
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(21 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

A094728 Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2004

Keywords

Comments

(T(n,k) mod 4) <> 2, see A042965, A016825.
All numbers m occur A034178(m) times.
The row polynomials T(n,x) appear in the calculation of the column g.f.s of triangle A120070 (used to find the frequencies of the spectral lines of the hydrogen atom).

Examples

			n=3: T(3,x) = 9+8*x+5*x^2.
Triangle begins:
   1;
   4,  3;
   9,  8,  5;
  16, 15, 12,  7;
  25, 24, 21, 16,  9;
  36, 35, 32, 27, 20, 11;
  49, 48, 45, 40, 33, 24, 13;
  64, 63, 60, 55, 48, 39, 28, 15;
  81, 80, 77, 72, 65, 56, 45, 32, 17;
  ... etc. - _Philippe Deléham_, Mar 07 2013
		

Crossrefs

Programs

  • Magma
    [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
    
  • Mathematica
    Table[n^2 - k^2, {n,12}, {k,0,n-1}]//Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • SageMath
    flatten([[n^2-k^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Mar 12 2024

Formula

Row polynomials: T(n,x) = n^2*Sum_{m=0..n} x^m - Sum_{m=0..n} m^2*x^m = Sum_{k=0..n-1} T(n,k)*x^k, n >= 1.
T(n, k) = A004736(n,k)*A094727(n,k).
T(n, 0) = A000290(n).
T(n, 1) = A005563(n-1) for n>1.
T(n, 2) = A028347(n) for n>2.
T(n, 3) = A028560(n-3) for n>3.
T(n, 4) = A028566(n-4) for n>4.
T(n, n-1) = A005408(n).
T(n, n-2) = A008586(n-1) for n>1.
T(n, n-3) = A016945(n-2) for n>2.
T(n, n-4) = A008590(n-2) for n>3.
T(n, n-5) = A017329(n-3) for n>4.
T(n, n-6) = A008594(n-3) for n>5.
T(n, n-8) = A008598(n-2) for n>7.
T(A005408(k), k) = A000567(k).
Sum_{k=0..n} T(n, k) = A002412(n) (row sums).
From G. C. Greubel, Mar 12 2024: (Start)
Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)
G.f.: x*(1 - 3*x^2*y + x*(1 + y))/((1 - x)^3*(1 - x*y)^2). - Stefano Spezia, Aug 04 2025

A120073 Denominator triangle for hydrogen spectrum rationals.

Original entry on oeis.org

4, 9, 36, 16, 16, 144, 25, 100, 225, 400, 36, 9, 12, 144, 900, 49, 196, 441, 784, 1225, 1764, 64, 64, 576, 64, 1600, 576, 3136, 81, 324, 81, 1296, 2025, 324, 3969, 5184, 100, 25, 900, 400, 100, 225, 4900, 1600, 8100, 121, 484, 1089, 1936, 3025, 4356, 5929, 7744, 9801, 12100
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The corresponding numerator triangle is A120072.
See A120072 and A120070 for more details.

Examples

			For the rational triangle see W. Lang link.
Denominator triangle begins as:
    4;
    9,  36;
   16,  16, 144;
   25, 100, 225,  400;
   36,   9,  12,  144,  900;
   49, 196, 441,  784, 1225, 1764;
   64,  64, 576,   64, 1600,  576, 3136;
   81, 324,  81, 1296, 2025,  324, 3969, 5184;
  100,  25, 900,  400,  100,  225, 4900, 1600, 8100;
		

Crossrefs

Programs

  • Magma
    [Denominator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    Table[(1/n^2 - 1/m^2)//Denominator, {m,2,15}, {n,m-1}]//Flatten (* Jean-François Alcover, Sep 16 2013 *)
  • SageMath
    def A120073(n,k): return denominator(1/k^2 - 1/n^2)
    flatten([[A120073(n,k) for k in range(1,n)] for n in range(2,19)]) # G. C. Greubel, Apr 24 2023

Formula

a(m,n) = denominator(r(m,n)) with r(m,n) = 1/n^2 - 1/m^2, m>=2, n=1..m-1.

A144433 Multiples of 8 interleaved with the sequence of odd numbers >= 3.

Original entry on oeis.org

8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59, 240, 61, 248, 63, 256, 65, 264
Offset: 1

Views

Author

Paul Curtz, Oct 04 2008

Keywords

Comments

For n >= 2, these are the numerators of 1/n^2 - 1/(n+1)^2: A061037(4), A061039(5), A061041(6), A061043(7), A061045(8), A061047(9), A061049(10), etc.

Crossrefs

Cf. A120070.

Programs

Formula

a(2*n+1) = A008590(n+1), a(2*n) = A005408(n).
a(2*n+1) + a(2*n+2) = A017281(n+1).
From R. J. Mathar, Apr 01 2009: (Start)
a(n) = 2*a(n-2) - a(n-4).
G.f.: x*(8+3*x-x^3)/((1-x)^2*(1+x)^2). (End)
a(n) = (n + 1) * 4^(n mod 2). - Wesley Ivan Hurt, Nov 27 2013

Extensions

Edited by R. J. Mathar, Apr 01 2009

A120077 Denominators of row sums of rational triangle A120072/A120073.

Original entry on oeis.org

4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 1270080, 153679680, 153679680, 25971865920, 25971865920, 129859329600, 519437318400, 150117385017600, 150117385017600, 54192375991353600, 2167695039654144, 1548353599752960, 221193371393280, 117011293467045120
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The first 19 terms coincide with A007407(n), for n>=2. However a(20) = 2167695039654144 and A007407(20) = 10838475198270720 = 5*a(20). Also a(21) = 1548353599752960 and A007407(21) = 221193371393280 = a(21)/7. From n = 22 up to at least n = 100 (checked) both sequences coincide again.
See the W. Lang link under A120072 for more details.
The corresponding numerators are given by A120076.
The n for which a(n) differs from A007407(n) are given by A309829. - Jeppe Stig Nielsen, Aug 18 2019

Examples

			The rationals A120076(m)/a(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ... ).
		

Crossrefs

Programs

  • Magma
    A120077:= func< n | Denominator( (&+[1/k^2: k in [1..n]]) -1/n) >;
    [A120077(n): n in [2..30]]; // G. C. Greubel, Apr 25 2023
    
  • Mathematica
    Table[Denominator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* G. C. Greubel, Apr 25 2023 *)
  • PARI
    a(n) = denominator(sum(j=1,n-1,1/j^2-1/n^2)) \\ Jeppe Stig Nielsen, Aug 18 2019
    
  • PARI
    a(n) = denominator(sum(j=1,n,1/j^2) - 1/n) \\ Jeppe Stig Nielsen, Aug 18 2019
    
  • SageMath
    def A120077(n): return denominator(harmonic_number(n,2) - 1/n)
    [A120077(n) for n in range(2,31)] # G. C. Greubel, Apr 25 2023

Formula

a(n) = denominator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m>=2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link under A103345.
O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).

Extensions

a(21)-a(23) from Jeppe Stig Nielsen, Aug 18 2019

A120081 Denominators of expansion for original Debye function (n=3).

Original entry on oeis.org

1, 8, 20, 1, 1680, 1, 90720, 1, 4435200, 1, 207567360, 1, 6538371840000, 1, 423437414400, 1, 67580611338240000, 1, 35763659520196608000, 1, 6155242080686899200000, 1, 117509166994931712000000, 1, 15244417230585693025075200000, 1, 1799300365026394374144000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Numerators are given in A120080.
See A120070 for the definition of the Debye function D(x)=D(3,x) and references and links.

Crossrefs

Programs

  • Magma
    [Denominator(3*Bernoulli(n)/((n+3)*Factorial(n))): n in [0..50]]; // G. C. Greubel, May 01 2023
    
  • Mathematica
    max = 26; Denominator[CoefficientList[Integrate[Normal[Series[(3*(t^3/(Exp[t] -1)))/x^3, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
    Table[Denominator[3*BernoulliB[n]/((n+3)*n!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
  • SageMath
    def A120081(n): return denominator(3*bernoulli(n)/((n+3)*factorial(n)))
    [A120081(n) for n in range(51)] # G. C. Greubel, May 01 2023

Formula

a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - 3*x/8 + Sum_{k >= 1} (3*B(2*k)/((2*k+3)*(2*k)!))*x^(2*k) ), where B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator( 3*Bernoulli(n)/((n+3)*n!) ), n >= 0. - G. C. Greubel, May 01 2023

A120074 Row sums of triangle A120072 (numerator triangle for H atom spectrum).

Original entry on oeis.org

3, 13, 25, 70, 54, 203, 197, 340, 303, 825, 445, 1378, 892, 1221, 1565, 3128, 1545, 4389, 2427, 3592, 3688, 7843, 3589, 8420, 6191, 9097, 7135, 15834, 5774, 19375, 12493, 14814, 14147, 19647, 12264, 33078
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Crossrefs

Programs

  • Magma
    A120072:= func< n,k | Numerator(1/k^2 - 1/n^2) >;
    [(&+[A120072(n,k): k in [1..n-1]]): n in [2..50]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    Table[Sum[1/n^2 - 1/m^2 //Numerator, {n,m-1}], {m,2,40}]  (* Jean-François Alcover, Sep 16 2013 *)
  • SageMath
    def A120072(n,k): return numerator(1/k^2 - 1/n^2)
    [sum(A120072(n,k) for k in range(1,n)) for n in range(2,51)] # G. C. Greubel, Apr 24 2023

Formula

a(n) = Sum_{k=1..n-1} A120072(n,k) for n >= 2.

A120075 Row sums of triangle A120073 (denominator triangle for H atom spectrum).

Original entry on oeis.org

4, 45, 176, 750, 1101, 4459, 6080, 13284, 16350, 46585, 33954, 109850, 92463, 142705, 198400, 432344, 255096, 761349, 500355, 824866, 925529, 2007555, 1044616, 2612500, 2158130, 3301641, 2848741
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Crossrefs

Programs

  • Magma
    A120073:= func< n,k | Denominator(1/k^2 - 1/n^2) >;
    [(&+[A120073(n,k): k in [1..n-1]]): n in [2..50]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    A120075[n_]:= Sum[Denominator[1/k^2 -1/n^2], {k,n-1}];
    Table[A120075[n], {n,2,50}] (* G. C. Greubel, Apr 24 2023 *)
  • SageMath
    def A120073(n,k): return denominator(1/k^2 - 1/n^2)
    [sum(A120073(n,k) for k in range(1,n)) for n in range(2,51)] # G. C. Greubel, Apr 24 2023

Formula

a(n) = Sum_{k=1..n-1} A120073(n,k), for n >= 2.

A120076 Numerators of row sums of rational triangle A120072/A120073.

Original entry on oeis.org

3, 37, 169, 4549, 4769, 241481, 989549, 9072541, 1841321, 225467009, 227698469, 38801207261, 39076419341, 196577627041, 790503882349, 229526961468061, 230480866420061, 83512167402400421, 3351610394325821
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The corresponding denominators are given by A120077.
See the W. Lang link under A120072 for more details.

Examples

			The rationals a(m)/A120077(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ...).
		

Crossrefs

Programs

  • Magma
    A120076:= func< n | Numerator( (&+[1/k^2: k in [1..n]]) -1/n) >;
    [A120076(n): n in [2..30]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    Table[Numerator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* G. C. Greubel, Apr 24 2023 *)
  • SageMath
    def A120076(n): return numerator(harmonic_number(n,2) - 1/n)
    [A120076(n) for n in range(2,31)] # G. C. Greubel, Apr 24 2023

Formula

a(n) = numerator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m >= 2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link in A103345.
O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).
Previous Showing 31-40 of 48 results. Next