cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A319574 A(n, k) = [x^k] JacobiTheta3(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, 0, 4, 6, 1, 0, 2, 0, 12, 8, 1, 0, 0, 4, 8, 24, 10, 1, 0, 0, 8, 6, 32, 40, 12, 1, 0, 0, 0, 24, 24, 80, 60, 14, 1, 0, 0, 0, 24, 48, 90, 160, 84, 16, 1, 0, 2, 4, 0, 96, 112, 252, 280, 112, 18, 1, 0, 0, 4, 12, 64, 240, 312, 574, 448, 144, 20, 1
Offset: 0

Views

Author

Peter Luschny, Oct 01 2018

Keywords

Comments

Number of ways of writing k as a sum of n squares.

Examples

			[ 0] 1,  0,    0,    0,     0,     0,     0      0,     0,     0, ... A000007
[ 1] 1,  2,    0,    0,     2,     0,     0,     0,     0,     2, ... A000122
[ 2] 1,  4,    4,    0,     4,     8,     0,     0,     4,     4, ... A004018
[ 3] 1,  6,   12,    8,     6,    24,    24,     0,    12,    30, ... A005875
[ 4] 1,  8,   24,   32,    24,    48,    96,    64,    24,   104, ... A000118
[ 5] 1, 10,   40,   80,    90,   112,   240,   320,   200,   250, ... A000132
[ 6] 1, 12,   60,  160,   252,   312,   544,   960,  1020,   876, ... A000141
[ 7] 1, 14,   84,  280,   574,   840,  1288,  2368,  3444,  3542, ... A008451
[ 8] 1, 16,  112,  448,  1136,  2016,  3136,  5504,  9328, 12112, ... A000143
[ 9] 1, 18,  144,  672,  2034,  4320,  7392, 12672, 22608, 34802, ... A008452
[10] 1, 20,  180,  960,  3380,  8424, 16320, 28800, 52020, 88660, ... A000144
   A005843,   v, A130809,  v,  A319576,  v ,   ...      diagonal: A066535
           A046092,    A319575,       A319577,     ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954.
  • J. Carlos Moreno and Samuel S. Wagstaff Jr., Sums Of Squares Of Integers, Chapman & Hall/CRC, (2006).

Crossrefs

Variant starting with row 1 is A122141, transpose of A286815.

Programs

  • Maple
    A319574row := proc(n, len) series(JacobiTheta3(0, x)^n, x, len+1);
    [seq(coeff(%, x, j), j=0..len-1)] end:
    seq(print([n], A319574row(n, 10)), n=0..10);
    # Alternative, uses function PMatrix from A357368.
    PMatrix(10, n -> A000122(n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    A[n_, k_] := If[n == k == 0, 1, SquaresR[n, k]];
    Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
  • Sage
    for n in (0..10):
        Q = DiagonalQuadraticForm(ZZ, [1]*n)
        print(Q.theta_series(10).list())

A000132 Number of ways of writing n as a sum of 5 squares.

Original entry on oeis.org

1, 10, 40, 80, 90, 112, 240, 320, 200, 250, 560, 560, 400, 560, 800, 960, 730, 480, 1240, 1520, 752, 1120, 1840, 1600, 1200, 1210, 2000, 2240, 1600, 1680, 2720, 3200, 1480, 1440, 3680, 3040, 2250, 2800, 3280, 4160, 2800, 1920, 4320, 5040, 2800, 3472, 5920
Offset: 0

Views

Author

Keywords

Comments

The units digit of a(n) is 2 if n=5*t^2 for some natural number t, and 0 otherwise. See Moreno & Wagstaff, p. 258, exercise 2. - Ant King, Mar 17 2013
See A025429 for the number of partitions of n into five nonzero squares. - M. F. Hasler, May 30 2014
Also, theta series of lattice Z^5. - Sean A. Irvine, Jul 27 2020

Examples

			G.f. = 1 + 10*x + 40*x^2 + 80*x^3 + 90*x^4 + 112*x^5 + 240*x^6 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 128.
  • J. Carlos Moreno and Samuel S. Wagstaff Jr., Sums Of Squares Of Integers, Chapman & Hall/CRC, (2006). [Ant King, Mar 17 2013]

Crossrefs

5th column of A286815. - Seiichi Manyama, May 27 2017
Row d=5 of A122141.

Programs

  • Mathematica
    Table[SquaresR[5, n], {n, 0, 46}] (* Ray Chandler, Nov 28 2006 *)
    SquaresR[5,Range[0,50]] (* Harvey P. Dale, Aug 26 2011 *)
  • PARI
    a(n, k=5) = if(n==0, return(1)); if(k <= 0, return(0)); if(k==1, return(issquare(n))); my(count = 0); for(v = 0, sqrtint(n), count += (2 - (v == 0))*if(k > 2, a(n - v^2, k-1), issquare(n - v^2) * (2 - (n - v^2 == 0)))); count; \\ Daniel Suteu, Aug 28 2021
    
  • Python
    # uses Python code from A000118
    from math import isqrt
    def A000132(n): return A000118(n)+(sum(A000118(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 23 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*5)
    Q.representation_number_list(47) # Peter Luschny, Jun 20 2014
    

Formula

G.f.: (Sum_{j=-oo..+oo} x^(j^2))^5. - R. J. Mathar, Jul 31 2007
a(n) = (10/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
a(n) = A000118(n) + 2*Sum_{k=1..floor(sqrt(n))} A000118(n - k^2). - Daniel Suteu, Aug 28 2021

Extensions

Extended by Ray Chandler, Nov 28 2006

A000152 Number of ways of writing n as a sum of 16 squares.

Original entry on oeis.org

1, 32, 480, 4480, 29152, 140736, 525952, 1580800, 3994080, 8945824, 18626112, 36714624, 67978880, 118156480, 197120256, 321692928, 509145568, 772845120, 1143441760, 1681379200, 2428524096, 3392205824, 4658843520, 6411152640
Offset: 0

Views

Author

Keywords

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 107.

Crossrefs

Row d=16 of A122141 and of A319574, 16th column of A286815.
Cf. A022047(n) = A000152(2*n).

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^16;
    # Alternative:
    A000152list := proc(len) series(JacobiTheta3(0, x)^16, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000152list(24); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[16, n], {n, 0, 23}] (* Ray Chandler, Nov 28 2006 *)
    CoefficientList[EllipticTheta[3, 0, x]^16 + O[x]^24, x] (* Jean-François Alcover, Jul 06 2017 *)
  • PARI
    first(n)=my(x='x); x+=O(x^(n+1)); Vec((2*sum(k=1,sqrtint(n),x^k^2) + 1)^16) \\ Charles R Greathouse IV, Jul 29 2016

Formula

G.f.: theta_3(0,q)^16, where theta_3 is the 3rd Jacobi theta function. - Ilya Gutkovskiy, Jan 13 2017
a(n) = (32/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A008452 Number of ways of writing n as a sum of 9 squares.

Original entry on oeis.org

1, 18, 144, 672, 2034, 4320, 7392, 12672, 22608, 34802, 44640, 60768, 93984, 125280, 141120, 182400, 262386, 317376, 343536, 421344, 557280, 665280, 703584, 800640, 1068384, 1256562, 1234080, 1421184, 1851264, 2034720, 2057280, 2338560
Offset: 0

Views

Author

Keywords

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
  • Lomadze, G.A.: On the representations of natural numbers by sums of nine squares. Acta. Arith. 68(3), 245-253 (1994). (Russian). See Equation (3.6).

Crossrefs

Row d=9 of A122141 and of A319574, 9th column of A286815.
Cf. A008431.

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^9;
    # Alternative
    A008452list := proc(len) series(JacobiTheta3(0, x)^9, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A008452list(32); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[9, n], {n, 0, 32}] (* Ray Chandler, Nov 28 2006 *)
  • Python
    # uses Python code from A000143
    from math import isqrt
    def A008452(n): return A000143(n)+(sum(A000143(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 23 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*9)
    Q.representation_number_list(37) # Peter Luschny, Jun 20 2014
    

Formula

G.f.: theta_3(0,q)^9, where theta_3 is the 3rd Jacobi theta function. - Ilya Gutkovskiy, Jan 13 2017
a(n) = (18/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A000144 Number of ways of writing n as a sum of 10 squares.

Original entry on oeis.org

1, 20, 180, 960, 3380, 8424, 16320, 28800, 52020, 88660, 129064, 175680, 262080, 386920, 489600, 600960, 840500, 1137960, 1330420, 1563840, 2050344, 2611200, 2986560, 3358080, 4194240, 5318268, 5878440, 6299520, 7862400, 9619560
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 20*x + 180*x^2 + 960*x^3 + 3380*x^4 + 8424*x^5 + 16320*x^6 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135 section 9.3. MR0106147 (21 #4881)

Crossrefs

Row d=10 of A122141 and of A319574, 10th column of A286815.

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^10;
    # Alternative:
    A000144list := proc(len) series(JacobiTheta3(0, x)^10, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000144list(30); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[10, n], {n, 0, 30}] (* Ray Chandler, Jun 29 2008; updated by T. D. Noe, Jan 23 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^10, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^k)^10 * (1 + x^k)^30 / (1 + x^(2*k))^20, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 24 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^10, n))}; /* Michael Somos, Sep 12 2005 */
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*10)
    Q.representation_number_list(37) # Peter Luschny, Jun 20 2014

Formula

Euler transform of period 4 sequence [ 20, -30, 20, -10, ...]. - Michael Somos, Sep 12 2005
Expansion of eta(q^2)^50 / (eta(q) * eta(q^4))^20 in powers of q. - Michael Somos, Sep 12 2005
a(n) = 4/5 * (A050456(n) + 16*A050468(n) + 8*A030212(n)) if n>0. - Michael Somos, Sep 12 2005
a(n) = (20/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A000145 Number of ways of writing n as a sum of 12 squares.

Original entry on oeis.org

1, 24, 264, 1760, 7944, 25872, 64416, 133056, 253704, 472760, 825264, 1297056, 1938336, 2963664, 4437312, 6091584, 8118024, 11368368, 15653352, 19822176, 24832944, 32826112, 42517728, 51425088, 61903776, 78146664, 98021616
Offset: 0

Views

Author

Keywords

Comments

Apparently 8 | a(n). - Alexander R. Povolotsky, Oct 01 2011

Examples

			G.f. = 1 + 24*x + 264*x^2 + 1760*x^3 + 7944*x^4 + 25872*x^5 + 64416*x^6 + 133056*x^7 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=12 of A122141 and of A319574, 12th column of A286815.

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(4), 6), 25); A[1] + 24*A[2] + 264*A[3] + 1760*A[4]; /* Michael Somos, Aug 15 2015 */
  • Maple
    (sum(x^(m^2),m=-10..10))^12; # gives g.f. for first 100 terms
    t1:=(sum(x^(m^2), m=-n..n))^12; t2:=series(t1,x,n+1); t2[n+1]; # N. J. A. Sloane, Oct 01 2011
    A000145list := proc(len) series(JacobiTheta3(0, x)^12, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000145list(27); # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[12,Range[0,30]] (* Harvey P. Dale, Sep 07 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^12, {q, 0, n}]; (* Michael Somos, Aug 15 2015 *)
    nmax = 30; CoefficientList[Series[Product[(1 - x^(2*k))^12 * (1 + x^(2*k - 1))^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
    

Formula

Expansion of eta(q^2)^60 / (eta(q) * eta(q^4))^24 in powers of q.
Euler transform of period 4 sequence [24, -36, 24, -12, ...]. - Michael Somos, Sep 21 2005
G.f.: (Sum_k x^k^2)^12 = theta_3(q)^12.
a(n) = A029751(n) + 16 * A000735(n). - Michael Somos, Sep 21 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t).
a(n) = (24/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

A302996 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 4, 2, 0, 1, 8, 6, 4, 2, 0, 1, 10, 24, 30, 4, 2, 0, 1, 12, 90, 104, 6, 12, 2, 0, 1, 14, 252, 250, 24, 30, 4, 2, 0, 1, 16, 574, 876, 730, 248, 30, 4, 2, 0, 1, 18, 1136, 3542, 4092, 1210, 312, 54, 4, 2, 0, 1, 20, 2034, 12112, 18494, 7812, 2250, 456, 6, 4, 2, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of ordered ways of writing n^2 as a sum of k squares.

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1,  ...
  0,  2,   4,   6,    8,    10,  ...
  0,  2,   4,   6,   24,    90,  ...
  0,  2,   4,  30,  104,   250,  ...
  0,  2,   4,   6,   24,   730,  ...
  0,  2,  12,  30,  248,  1210,  ...
		

Crossrefs

Columns k=0..4,7 give A000007, A040000, A046109, A016725, A267326, A361695.
Main diagonal gives A232173.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
          b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n))))
        end:
    A:= (n, k)-> b(n^2, k):
    seq(seq(A(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 10 2023
  • Mathematica
    Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k.

A290054 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j^3))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 0, 0, 1, 6, 10, 4, 0, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 1, 0, 1, 9, 28, 35, 15, 1, 0, 0, 2, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 3, 2, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 4, 6, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k nonnegative cubes.

Examples

			Square array begins:
1,  1,  1,  1,  1,   1,  ...
0,  1,  2,  3,  4,   5,  ...
0,  0,  1,  3,  6,  10,  ...
0,  0,  0,  1,  4,  10,  ...
0,  0,  0,  0,  1,   5,  ...
0,  0,  0,  0,  0,   1,  ...
		

Crossrefs

Main diagonal gives A291700.
Antidiagonal sums give A302019.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^i^3, {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j^3))^k.

A008453 Number of ways of writing n as a sum of 11 squares.

Original entry on oeis.org

1, 22, 220, 1320, 5302, 15224, 33528, 63360, 116380, 209550, 339064, 491768, 719400, 1095160, 1538416, 1964160, 2624182, 3696880, 4763220, 5686648, 7217144, 9528816, 11676280, 13495680, 16317048, 20787470, 25022184, 27785120, 32503680
Offset: 0

Views

Author

Keywords

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=11 of A122141 and of A319574, 11th column of A286815.
Cf. A022042.

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^11;
    # Alternative:
    A008453list := proc(len) series(JacobiTheta3(0, x)^11, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A008453list(29); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[11, n], {n, 0, 28}] (* Ray Chandler, Nov 28 2006 *)

Formula

G.f.: theta_3(0,q)^11, where theta_3 is the 3rd Jacobi theta function. - Ilya Gutkovskiy, Jan 13 2017
a(n) = (22/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A276285 Number of ways of writing n as a sum of 13 squares.

Original entry on oeis.org

1, 26, 312, 2288, 11466, 41808, 116688, 265408, 535704, 1031914, 1899664, 3214224, 5043376, 7801744, 12066912, 17689152, 24443978, 34039200, 48210760, 64966096, 83323344, 109157152, 145532816, 185245632, 227110416, 284788010, 363737712
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Comments

More generally, the ordinary generating function for the number of ways of writing n as a sum of k squares is theta_3(0, q)^k = 1 + 2*k*q + 2*(k - 1)*k*q^2 + (4/3)*(k - 2)*(k - 1)*k*q^3 + (2/3)*((k - 3)*(k - 2)*(k - 1) + 3)*k*q^4 + (4/15) *(k - 1)*k*(k^3 - 9*k^2 + 26*k - 9)*q^5 + ..., where theta is the Jacobi theta functions.

Crossrefs

13th column of A286815. - Seiichi Manyama, May 27 2017
Row d=13 of A122141.
Cf. Number of ways of writing n as a sum of k squares: A004018 (k = 2), A005875 (k = 3), A000118 (k = 4), A000132 (k = 5), A000141 (k = 6), A008451 (k = 7), A000143 (k = 8), A008452 (k = 9), A000144 (k = 10), A008453 (k = 11), A000145 (k = 12), this sequence (k = 13), A000152 (k = 16).

Programs

  • Mathematica
    Table[SquaresR[13, n], {n, 0, 26}]

Formula

G.f.: theta_3(0,q)^13, where theta_3(x,q) is the third Jacobi theta function.
a(n) = (26/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
Previous Showing 11-20 of 28 results. Next