cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 101 results. Next

A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 1, 11, 18, 3, 21, 35, 8, 41, 67, 20, 80, 131, 44, 1, 157, 257, 94, 4, 310, 505, 197, 12, 614, 996, 406, 32, 1218, 1973, 825, 80, 2421, 3915, 1669, 186, 1, 4819, 7781, 3364, 415, 5, 9602, 15486, 6762, 901, 17, 19147, 30855, 13567, 1918, 49
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
     1
     1
     1     1
     2     2
     3     5
     6     9     1
    11    18     3
    21    35     8
    41    67    20
    80   131    44     1
   157   257    94     4
   310   505   197    12
   614   996   406    32
For example, row n = 5 counts the following compositions:
  (113)    (5)     (23)
  (122)    (14)
  (1112)   (32)
  (1121)   (41)
  (1211)   (131)
  (11111)  (212)
           (221)
           (311)
           (2111)
		

Crossrefs

The version for permutations is A008292, weak A123125.
Column k = 0 is A008930.
Row sums are A011782.
The opposite version for partitions is A114088.
The weak version for partitions is A115994.
Column k = 1 is A351983.
The corresponding rank statistic is A352516.
The opposite version is A352521, first col A219282, rank statistic A352514.
The weak opposite version is A352522, first col A238874, rank stat A352515.
The weak version is A352525, first col (k = 1) A177510, rank stat A352517.
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352487 lists the excedance set of A122111, opposite A352490.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pd[y_]:=Length[Select[Range[Length[y]],#
    				
  • PARI
    S(v,u)={vector(#v, k, sum(i=1, k-1, v[k-i]*u[i]))}
    T(n)={my(v=vector(1+n), s); v[1]=1; s=v; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1))); s+=v); [Vecrev(p) | p<-s]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 02 2023

A008518 Triangle of Eulerian numbers with rows multiplied by 1 + x.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 12, 22, 12, 1, 1, 27, 92, 92, 27, 1, 1, 58, 359, 604, 359, 58, 1, 1, 121, 1311, 3607, 3607, 1311, 121, 1, 1, 248, 4540, 19912, 31238, 19912, 4540, 248, 1, 1, 503, 15110, 102842, 244424, 244424, 102842, 15110, 503, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
   1;
   1,   1;
   1,   2,    1;
   1,   5,    5,    1;
   1,  12,   22,   12,    1;
   1,  27,   92,   92,   27,    1;
   1,  58,  359,  604,  359,   58,   1;
   1, 121, 1311, 3607, 3607, 1311, 121, 1;
   ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.

Crossrefs

Cf. A000007, A008292, A098558 (row sums), A177042 (T(2*n, n)).
Columns include A000325 (k=1).

Programs

  • Magma
    Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) >;
    [Eulerian(n, k-1) + Eulerian(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jun 18 2024
    
  • Mathematica
    t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = (n-k) t[n-1, k-1] + (k+1) t[n-1, k];
    A[n_, k_] /; k == n+1 = 0; A[n_, k_] := t[n, n-k];
    T[n_, k_] := A[n, k] + A[n, k+1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, after Franck Maminirina Ramaharo *)
  • SageMath
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1, j)*(k-j+1)^n for j in range(k+2))
    flatten([[Eulerian(n,k-1) + Eulerian(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 18 2024

Formula

E.g.f.: (exp(x) - y*exp(y*x))/(exp(y*x) - y*exp(x)). - Vladeta Jovovic, Apr 06 2001
T(n,k) = A123125(n,k) + A123125(n,k+1), with A123125(n,n+1) = 0. - Franck Maminirina Ramaharo, Oct 21 2018
From G. C. Greubel, Jun 18 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)

Extensions

More terms from Vladeta Jovovic, Apr 06 2001

A046739 Triangle read by rows, related to number of permutations of [n] with 0 successions and k rises.

Original entry on oeis.org

0, 1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 161, 51, 1, 1, 113, 813, 813, 113, 1, 1, 239, 3361, 7631, 3361, 239, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 1, 2025, 141549, 1704693, 5494017
Offset: 1

Views

Author

Keywords

Comments

From Emeric Deutsch, May 25 2009: (Start)
T(n,k) is the number of derangements of [n] having k excedances. Example: T(4,2)=7 because we have 3*14*2, 3*4*12, 4*3*12, 2*14*3, 2*4*13, 3*4*21, 4*3*21, each with two excedances (marked). An excedance of a permutation p is a position i such that p(i) > i.
Sum_{k>=1} k*T(n,k) = A000274(n+1). (End)
The triangle 1;1,1;1,7,1;... has general term T(n,k) = Sum_{j=0..n+2} (-1)^(n-j)*C(n+2,j)*A123125(j,k+2) and bivariate g.f. ((1-y)*(y*exp(2*x*y) + exp(x*(y+1))(y^2 - 4*y + 1) + y*exp(2*x)))/(exp(x*y) - y*exp(x))^3. - Paul Barry, May 10 2011
The n-th row is the local h-vector of the barycentric subdivision of a simplex, i.e., the Coxeter complex of type A. See Proposition 2.4 of Stanley's paper below. - Kyle Petersen, Aug 20 2012
T(n,k) is the k-th coefficient of the local h^*-polynomial, or box polynomial, of the s-lecture hall n-simplex with s=(2,3,...,n+1). See Theorem 4.1 of the paper by N. Gustafsson and L. Solus below. - Liam Solus, Aug 23 2018

Examples

			Triangle starts:
  0;
  1;
  1,   1;
  1,   7,   1;
  1,  21,  21,   1;
  1,  51, 161,  51,   1;
  1, 113, 813, 813, 113, 1;
  ...
From _Peter Luschny_, Sep 17 2021: (Start)
The triangle shows the coefficients of the following bivariate polynomials:
  [1] 0;
  [2] x*y;
  [3] x^2*y +     x*y^2;
  [4] x^3*y +   7*x^2*y^2 +     x*y^3;
  [5] x^4*y +  21*x^3*y^2 +  21*x^2*y^3 +     x*y^4;
  [6] x^5*y +  51*x^4*y^2 + 161*x^3*y^3 +  51*x^2*y^4 +     x*y^5;
  [7] x^6*y + 113*x^5*y^2 + 813*x^4*y^3 + 813*x^3*y^4 + 113*x^2*y^5 + x*y^6;
  ...
These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to 'y'. The main antidiagonals consist only of zeros. Substituting x <- 1 and y <- -1 generates the Euler secant numbers A122045. (Compare with A081658.)
(End)
		

Crossrefs

Cf. A046740.
Row sums give A000166.
Diagonals give A070313, A070315.
T(2n,n) gives A320337.

Programs

  • Maple
    G := (1-t)*exp(-t*z)/(1-t*exp((1-t)*z)): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: 0; for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form # Emeric Deutsch, May 25 2009
  • Mathematica
    max = 12; f[t_, z_] := (1-t)*(Exp[-t*z]/(1 - t*Exp[(1-t)*z])); se = Series[f[t, z], {t, 0, max}, {z, 0, max}];
    coes = Transpose[ #*Range[0, max]! & /@ CoefficientList[se, {t, z}]]; Join[{0}, Flatten[ Table[ coes[[n, k]], {n, 2, max}, {k, 2, n-1}]]] (* Jean-François Alcover, Oct 24 2011, after g.f. *)
    E1[n_ /; n >= 0, 0] = 1; (* E1(n,k) are the Eulerian numbers *)
    E1[n_, k_] /; k < 0 || k > n = 0;
    E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
    T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}];
    Table[T[n, k], {n, 1, 100}, {k, 1, n-1}] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 31 2020, after Peter Luschny in A271697 *)
    Table[Expand[n!Factor[SeriesCoefficient[(x-y)/(x Exp[y t]-y Exp[x t]),{t,0,n}]]],{n,0,12}]//TableForm (* Mamuka Jibladze, Nov 26 2024 *)
  • PARI
    T(n)={my(x='x+O('x^(n+1))); concat([[0]], [Vecrev(p/y) | p<-Vec(-1+serlaplace((y-1)/(y*exp(x)-exp(x*y))))])}
    { my(A=T(10));for(i=1,#A,print(A[i])) } \\ Andrew Howroyd, Nov 13 2024

Formula

a(n+1, r) = r*a(n, r) + (n+1-r)*a(n, r-1) + n*a(n-1, r-1).
exp(-t)/(1 - exp((x-1)t)/(x-1)) = 1 + x*t^2/2! + (x+x^2)*t^3/3! + (x+7x^2+x^3)*t^4/4! + (x+21x^2+21x^3+x^4)*t^5/5! + ... - Philippe Deléham, Jun 11 2004
E.g.f.: (y-1)/(y*exp(x) - exp(x*y)). - Mamuka Jibladze, Nov 08 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

A340556 E2(n, k), the second-order Eulerian numbers with E2(0, k) = δ_{0, k}. Triangle read by rows, E2(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 0

Views

Author

Peter Luschny, Feb 05 2021

Keywords

Comments

The second-order Eulerian number E2(n, k) is the number of Stirling permutations of order n with exactly k descents; here the last index is defined to be a descent. More formally, let Q_n denote the set of permutations of the multiset {1,1,2,2, ..., n,n} in which, for all j, all entries between two occurrences of j are larger than j, then E2(n, k) = card({s in Q_n with des(s) = k}), where des(s) = card({j: s(j) > s(j+1)}) is the number of descents of s.
Also the number of Riordan trapezoidal words of length n with k distinct letters (see Riordan 1976, p. 9).
Also the number of rooted plane trees on n + 1 vertices with k leaves (see Janson 2008, p. 543).
Let b(n) = (1/2)*Sum_{k=0..n-1} (-1)^k*E2(n-1, k+1) / C(2*n-1, k+1). Apparently b(n) = Bernoulli(n, 1) = -n*Zeta(1 - n) = Integral_{x=0..1}F_n(x) for n >= 1. Here F_n(x) are the signed Fubini polynomials (A278075). (See Rzadkowski and Urlinska, example 4.)

Examples

			Triangle starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1, 2;
  [3] 0, 1, 8,    6;
  [4] 0, 1, 22,   58,    24;
  [5] 0, 1, 52,   328,   444,     120;
  [6] 0, 1, 114,  1452,  4400,    3708,    720;
  [7] 0, 1, 240,  5610,  32120,   58140,   33984,    5040;
  [8] 0, 1, 494,  19950, 195800,  644020,  785304,   341136,   40320;
  [9] 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880.
To illustrate the generating function for row 3: The expansion of (1 - x)^7*(x*exp(-x) + 16*x^2*exp(-x)^2 + (243*x^3*exp(-x)^3)/2) gives the polynomial x + 8*x^2 + 6*x^3. The coefficients of this polynomial give row 3.
.
Stirling permutations of order 3 with exactly k descents: (When counting the descents one may assume an invisible '0' appended to the permutations.)
  T[3, k=0]:
  T[3, k=1]: 112233;
  T[3, k=2]: 331122; 223311; 221133; 133122; 122331; 122133; 113322; 112332;
  T[3, k=3]: 332211; 331221; 233211; 221331; 133221; 123321.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.

Crossrefs

Indexing the second-order Eulerian numbers comes in three flavors: A008517 (following Riordan and Comtet), A201637 (following Graham, Knuth, and Patashnik) and this indexing, extending the definition of Gessel and Stanley. (A008517 is the main entry of the numbers.) The corresponding triangles of the first-order Eulerian numbers are A008292, A173018, and A123125.
Row reversed: A163936 (with offset = 0).
Values: E2poly(n, 1) = A001147(n), E2poly(n, -1) ~ -A001662(n+1), E2poly(n, 2) = A112487(n), 2^n*E2poly(n, 1/2) = A000311(n+1), 2^n*E2poly(n, -1/2) = A341106(n).

Programs

  • Maple
    # Using the recurrence:
    E2 := proc(n, k) option remember;
    if k = 0 and n = 0 then return 1 fi; if n < 0 then return 0 fi;
    E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) end: seq(seq(E2(n, k), k = 0..n), n = 0..9);
    # Using the row generating function:
    E2egf := n -> (1-x)^(2*n+1)*add(k^(n+k)/k!*(x*exp(-x))^k, k=0..n);
    T := (n, k) -> coeftayl(E2egf(n), x=0, k): seq(print(seq(T(n, j),j=0..n)), n=0..7);
    # Using the built-in function:
    E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)):
    # Using the compositional inverse (series reversion):
    E2triangle := proc(N) local r, s, C; Order := N + 2;
    s := solve(y = series(x - t*(exp(x) - 1), x), x):
    r := n -> -n!*(t - 1)^(2*n - 1)*coeff(s, y, n); C := [seq(expand(r(n)), n = 1..N)];
    seq(print(seq(coeff(C[n+1], t, k), k = 0..n)), n = 0..N-1) end: E2triangle(10);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* Via row polynomials: *)
    E2poly[n_] := If[n == 0, 1,
      Expand[Simplify[x (x - 1)^(2 n) D[((1 - x)^(1 - 2 n) E2poly[n - 1]), x]]]];
    Table[CoefficientList[E2poly[n], x], {n, 0, 9}] // Flatten
    (* Series reversion *)
    Revert[gf_, len_] := Module[{S = InverseSeries[Series[gf, {x, 0, len + 1}], x]},
    Table[CoefficientList[(n + 1)! (1 - t)^(2 n + 1) Coefficient[S, x, n + 1], t],
    {n, 0, len}] // Flatten]; Revert[x + t - t Exp[x], 6]
  • PARI
    E2poly(n) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1)));
    { for(n = 0, 9, print(Vecrev(E2poly(n)))) }
    
  • PARI
    T(n, k) = sum(j=0, n-k, (-1)^(n-j)*binomial(2*n+1, j)*stirling(2*n-k-j+1, n-k-j+1, 1)); \\ Michel Marcus, Feb 11 2021
    
  • SageMath
    # See also link to notebook.
    @cached_function
    def E2(n, k):
        if n < 0: return 0
        if k == 0: return k^n
        return k * E2(n - 1, k) + (2*n - k) * E2(n - 1, k - 1)  # Peter Luschny, Mar 08 2025

Formula

E2(n, k) = E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) for n > 0 and 0 <= k <= n, and E2(0, 0) = 1; in all other cases E(n, k) = 0.
E2(n, k) = Sum_{j=0..n-k}(-1)^(n-j)*binomial(2*n+1, j)*Stirling1(2*n-k-j+1, n-k-j+1).
E2(n, k) = Sum_{j=0..k}(-1)^(k-j)*binomial(2*n + 1, k - j)*Stirling2(n + j, j).
Stirling1(x, x - n) = (-1)^n*Sum_{k=0..n} E2(n, k)*binomial(x + k - 1, 2*n).
Stirling2(x, x - n) = Sum_{k=0..n} E2(n, k)*binomial(x + n - k, 2*n).
E2poly(n, x) = Sum_{k=0..n} E2(n, k)*x^k, as row polynomials.
E2poly(n, x) = x*(x-1)^(2*n)*d_{x}((1-x)^(1-2*n)*E2poly(n-1)) for n>=1 and E2poly(0)=1.
E2poly(n, x) = (1 - x)^(2*n + 1)*Sum_{k=0..n}(k^(n + k)/k!)*(x*exp(-x))^k.
W(n, k) = [x^k] (1+x)^n*E2poly(n, x/(1 + x)) are the Ward numbers A269939.
E2(n, k) = [x^k] (1-x)^n*Wpoly(n, x/(1 - x)); Wpoly(n, x) = Sum_{k=0..n}W(n, k)*x^k.
W(n, k) = Sum_{j=0..k} E2(n, j)*binomial(n - j, n - k).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*W(n, j)*binomial(n - j, k - j).
The compositional inverse with respect to x of x - t*(exp(x) - 1) (see B. Drake):
T(n, k) = [t^k](n+1)!*(1-t)^(2*n+1)*[x^(n+1)] InverseSeries(x - t*(exp(x)-1), x).
AS1(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, j+1), where AS1(n, k) are the associated Stirling numbers of the first kind (A008306, A106828).
E2(n, k) = Sum_{j=0..n-k+1} (-1)^(n-k-j+1)*AS1(n+j, j)*binomial(n-j, n-k-j+1), for n >= 1.
AS2(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) for n >=1, where AS2(n, k) are the associated Stirling numbers of the second kind (A008299, A137375).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*AS2(n + j, j)*binomial(n - j, k - j).

A352491 n minus the Heinz number of the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, -1, 1, -3, 0, -9, 3, 0, -2, -21, 2, -51, -10, -3, 9, -111, 3, -237, 0, -15, -26, -489, 10, -2, -70, 2, -12, -995, 0, -2017, 21, -39, -158, -19, 15, -4059, -346, -105, 12, -8151, -18, -16341, -36, -5, -722, -32721, 26, -32, 5, -237, -108, -65483, 19, -53
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Problem: What is the image? In the nonnegative case it appears to start: 0, 1, 2, 3, 5, 7, 9, ...

Examples

			The partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, so a(196) = 196 - 189 = 7.
		

Crossrefs

Positions of zeros are A088902, counted by A000700.
A similar sequence is A175508.
Positions of nonzero terms are A352486, counted by A330644.
Positions of negative terms are A352487, counted by A000701.
Positions of nonnegative terms are A352488, counted by A046682.
Positions of nonpositive terms are A352489, counted by A046682.
Positions of positive terms are A352490, counted by A000701.
A000041 counts integer partitions, strict A000009.
A003963 is product of prime indices, conjugate A329382.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 is partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 is partition conjugate of prime signature, ranked by A238745.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[n-Times@@Prime/@conj[primeMS[n]],{n,30}]

Formula

a(n) = n - A122111(n).

A352490 Nonexcedance set of A122111. Numbers k > A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 140, 144, 150, 160, 162, 168, 180, 192, 196, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 315, 320, 324, 336, 352, 360, 375, 378
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than that of their conjugate.

Examples

			The terms together with their prime indices begin:
    4: (1,1)
    8: (1,1,1)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   24: (2,1,1,1)
   27: (2,2,2)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   60: (3,2,1,1)
   64: (1,1,1,1,1,1)
For example, the partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, and 196 > 189, so 196 is in the sequence, and 189 is not.
		

Crossrefs

These partitions are counted by A000701.
The opposite version is A352487, weak A352489.
The weak version is A352488, counted by A046682.
These are the positions of positive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) > A122111(a(n)).

A352514 Number of strong nonexcedances (parts below the diagonal) of the n-th composition in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 1, 2, 3, 4, 3, 4, 4, 5, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.

Examples

			The 83rd composition in standard order is (2,3,1,1), with strong nonexcedances {3,4}, so a(83) = 2.
		

Crossrefs

Positions of first appearances are A000225.
The weak version is A352515, counted by A352522 (first column A238874).
The opposite version is A352516, counted by A352524 (first column A008930).
The weak opposite version is A352517, counted by A352525 (first A177510).
The triangle A352521 counts these compositions (first column A219282).
A008292 is the triangle of Eulerian numbers (version without zeros).
A011782 counts compositions.
A173018 counts permutations by number of excedances, weak A123125.
A238349 counts comps by fixed parts, first col A238351, rank stat A352512.
A352490 is the (strong) nonexcedance set of A122111.
A352523 counts comps by unfixed parts, first col A010054, rank stat A352513.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[pa[stc[n]],{n,0,30}]

A201354 Expansion of e.g.f. exp(x) / (4 - 3*exp(x)).

Original entry on oeis.org

1, 4, 28, 292, 4060, 70564, 1471708, 35810212, 995827420, 31153998244, 1082931514588, 41407678132132, 1727226633730780, 78051253062575524, 3798351192214837468, 198049421007186054052, 11014905131587945490140, 650903915009792820650404, 40726453234725158535472348
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2011

Keywords

Examples

			E.g.f.: E(x) = 1 + 4*x + 28*x^2/2! + 292*x^3/3! + 4060*x^4/4! + 70564*x^5/5! + ...
O.g.f.: A(x) = 1 + 4*x + 28*x^2 + 292*x^3 + 4060*x^4 + 70564*x^5 + ...
where A(x) = 1 + 4*x/(1+x) + 2!*4^2*x^2/((1+x)*(1+2*x)) + 3!*4^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*4^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( 1/(4*Exp(-x) -3) ))); // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series(1/(4*exp(-x) -3), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    Table[Sum[(-1)^(n-k)*4^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(4 - 3*exp(x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 4^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    {Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
    {a(n)=sum(k=0, n, (-1)^(n-k)*4^k*Stirling2(n, k)*k!)}
    
  • Sage
    [sum( (-1)^(n-j)*4^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} n! * 4^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 4*x/(1-3*x/(1 - 8*x/(1-6*x/(1 - 12*x/(1-9*x/(1 - 16*x/(1-12*x/(1 - 20*x/(1-15*x/(1 - ...))))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 4^k * Stirling2(n,k) * k!.
a(n) = 4*A050352(n) for n>0.
a(n) = Sum_{k=0..n} A123125(n,k)*4^k*3^(n-k). - Philippe Deléham, Nov 30 2011
a(n) = log(4/3) * Integral_{x = 0..oo} (ceiling(x))^n * (4/3)^(-x) dx. - Peter Bala, Feb 06 2015
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 6*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) ~ n! / (3*(log(4/3))^(n+1)). - Vaclav Kotesovec, Jun 13 2013
a(n) = 1 + 3 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -4*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 4*a(n-1) + 3*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (4/3)*A032033(n) - (1/3)*0^n. - Seiichi Manyama, Dec 21 2023

A352487 Excedance set of A122111. Numbers k < A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   5: (3)
   7: (4)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  21: (4,2)
  22: (5,1)
  23: (9)
  25: (3,3)
  26: (6,1)
  28: (4,1,1)
For example, the partition (4,1,1) has Heinz number 28 and its conjugate (3,1,1,1) has Heinz number 40, and 28 < 40, so 28 is in the sequence, and 40 is not.
		

Crossrefs

These partitions are counted by A000701.
The weak version is A352489, counted by A046682.
The opposite version is A352490, weak A352488.
These are the positions of negative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 = partition conjugate of prime signature, ranked by A238745.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#
    				

Formula

a(n) < A122111(a(n)).

A352515 Number of weak nonexcedances (parts on or below the diagonal) of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 1, 2, 3, 4, 3, 4, 4, 5, 0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 3, 4, 4, 5, 2, 4, 4, 5, 4, 5, 5, 6, 0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.

Examples

			The 89th composition in standard order is (2,1,3,1), with weak nonexcedances {2,3,4}, so a(89) = 3.
		

Crossrefs

Positions of first appearances are A000225.
The strong version is A352514, counted by A352521 (first column A219282).
The strong opposite version is A352516, counted by A352524 (first A008930).
The opposite version is A352517, counted by A352525 (first column A177510).
Triangle A352522 counts these comps (first col A238874), partitions A115994.
A008292 is the triangle of Eulerian numbers (version without zeros).
A011782 counts compositions.
A173018 counts permutations by number of excedances, weak A123125.
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352488 is the weak nonexcedance set of A122111.
A352523 counts comps by unfixed pts, first col A010054, rank stat A352513.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    paw[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]];
    Table[paw[stc[n]],{n,0,30}]
Previous Showing 21-30 of 101 results. Next