cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A168668 a(n) = n*(2 + 5*n).

Original entry on oeis.org

0, 7, 24, 51, 88, 135, 192, 259, 336, 423, 520, 627, 744, 871, 1008, 1155, 1312, 1479, 1656, 1843, 2040, 2247, 2464, 2691, 2928, 3175, 3432, 3699, 3976, 4263, 4560, 4867, 5184, 5511, 5848, 6195, 6552, 6919, 7296, 7683, 8080, 8487, 8904, 9331, 9768, 10215, 10672
Offset: 0

Views

Author

Paul Curtz, Dec 02 2009

Keywords

Comments

Appears on the main diagonal of the following table of terms of the Hydrogen series, A169603:
0, 3, 8, 15, 24, ... A005563
0, 7, 16, 1, 40, 55, ... A061039
0, 11, 24, 39, 56, 3, 96, ... A061043
0, 15, 32, 51, 72, 95, 120, ... A061047
0, 19, 40, 63, 88, 115, 144, 175, 208, 1, ...

Crossrefs

Programs

Formula

G.f.: x*(7 + 3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n) - a(n-1) = 10*n-3.
Second differences: a(n) - 2*a(n-1) + a(n-2) = 10 = A010692(n).
a(n) = A131242(10n+6). - Philippe Deléham, Mar 27 2013
a(n) = A000384(n) + 6*A000217(n). - Luciano Ancora, Mar 28 2015
a(n) = A000217(n) + A000217(3*n). - Bruno Berselli, Jul 01 2016
E.g.f.: x*(7 + 5*x)*exp(x). - G. C. Greubel, Jul 29 2016
Sum_{n>=1} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/4 + sqrt(5)*log(phi)/4 - 5*log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023

Extensions

Edited and extended by R. J. Mathar, Dec 05 2009

A061107 a(0) = 0, a(1) = 1, a(n) is the concatenation of a(n-2) and a(n-1) for n > 1.

Original entry on oeis.org

0, 1, 10, 101, 10110, 10110101, 1011010110110, 101101011011010110101, 1011010110110101101011011010110110, 1011010110110101101011011010110110101101011011010110101
Offset: 0

Views

Author

Amarnath Murthy, Apr 20 2001

Keywords

Comments

Original name was: In the Fibonacci rabbit problem we start with an immature pair 'I' which matures after one season to 'M'. This mature pair after one season stays alive and breeds a new immature pair and we get the following sequence I, MI, MIM, MIMMI, MIMMIMIM, MIMMIMIMMIMMI... if we replace 'I' by a '0' and 'M' by a '1' we get the required binary sequence.

Examples

			a(0) = 0, a(1) = 1, a(2) = a(1)a(0)= 10, etc.
		

References

  • Amarnath Murthy, Smarandache Reverse auto correlated sequences and some Fibonacci derived sequences, Smarandache Notions Journal Vol. 12, No. 1-2-3, Spring 2001.
  • Ian Stewart, The Magical Maze.

Crossrefs

Cf. A063896, A131242. See A005203 for the sequence version converted to decimal.
Column k=10 of A144287.

Programs

  • Maple
    A[0]:= 0: A[1]:= 1: A[2]:= 10:
    for n from 3 to 20 do
    A[n]:= 10^(ilog10(A[n-2])+1)*A[n-1]+A[n-2]
    od:
    seq(A[n],n=0..10); # Robert Israel, Apr 30 2015
  • Mathematica
    nxt[{a_,b_}]:={b,FromDigits[Join[IntegerDigits[b],IntegerDigits[a]]]}; Transpose[NestList[nxt,{0,1},10]][[1]] (* Harvey P. Dale, Jul 05 2015 *)
  • PARI
    { default(realprecision, 100); L=log(10); for (n=0, 15, if (n>2, a=a1*10^(log(a2)\L + 1) + a2; a2=a1; a1=a, if (n==0, a=0, if (n==1, a=a2=1, a=a1=10))); write("b061107.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 18 2009

Formula

a(0) = 0, a(1) =1, a(n) = concatenation of a(n-1) and a(n-2).
a(n) = a(n-1)*2^floor(log_2(a(n-2))+1)+a(n-2), for n>2, a(2)=10 (base 2). - Hieronymus Fischer, Jun 26 2007
a(n) = A036299(n-1), n>0. - R. J. Mathar, Oct 02 2008
a(n) can be transformed by a(n-1) when you change every single "1"(from a(n-1)) into "10" and every single "0"(from a(n-1)) into "1". [YuJiping and Sirius Caffrey, Apr 30 2015]

Extensions

More terms from Hieronymus Fischer, Jun 26 2007

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A279169 a(n) = floor( 4*n^2/5 ).

Original entry on oeis.org

0, 0, 3, 7, 12, 20, 28, 39, 51, 64, 80, 96, 115, 135, 156, 180, 204, 231, 259, 288, 320, 352, 387, 423, 460, 500, 540, 583, 627, 672, 720, 768, 819, 871, 924, 980, 1036, 1095, 1155, 1216, 1280, 1344, 1411, 1479, 1548, 1620, 1692, 1767, 1843, 1920, 2000, 2080, 2163, 2247
Offset: 0

Views

Author

Bruno Berselli, Dec 07 2016

Keywords

Crossrefs

Cf. A090223: floor(4*n/5).
Subsequence of A008728, A014601, A118015, A131242.
Cf. similar sequences with closed form floor(k*n^2/5): A118015 (k=1), A033437 (k=2), A184535 (k=3).

Programs

  • Magma
    [4*n^2 div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n^2/5], {n, 0, 60}]
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,3,7,12,20,28},60] (* Harvey P. Dale, Nov 07 2020 *)
  • PARI
    vector(60, n, n--; floor(4*n^2/5))
    
  • Python
    [int(4*n**2/5) for n in range(60)]
    
  • Sage
    [floor(4*n^2/5) for n in range(60)]
    

Formula

O.g.f.: x^2*(3 + x + x^2 + 3*x^3)/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
a(5*m+r) = 4*m*(5*m + 2*r) + a(r), where m >= 0 and 0 <= r < 5. Example: for m=4 and r=3, a(5*4+3) = a(23) = 4*4*(5*4 + 2*3) + a(3) = 416 + 7 = 423.
a(n) = A118015(2*n) = A008728(4*n+2) = A131242(4*n+4) = A014601(floor(2*n^2/5)).
Sum_{n>=2} 1/a(n) = Pi^2/120 + sqrt(29 - 62/sqrt(5))*Pi/8 + 5/16. - Amiram Eldar, Sep 26 2022

A269445 a(n) = Sum_{k=0..n} floor(k/13).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

Partial sums of A090620.
More generally, the ordinary generating function for the Sum_{k=0..n} floor(k/m) is x^m/((1 - x^m)*(1 - x)^2).

Crossrefs

Cf. A090620.
Cf. similar sequences of Sum_{k=0..n} floor(k/m): A002620 (m=2), A130518 (m=3), A130519 (m=4), A130520 (m=5), A174709 (m=6), A174738 (m=7), A118729 (m=8), A218470 (m=9), A131242 (m=10), A218530 (m=11), A221912 (m=12), this sequence (m=13).

Programs

  • Mathematica
    Table[Sum[Floor[k/13], {k, 0, n}], {n, 0, 73}]
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 74]

Formula

G.f.: x^13/((1 - x^13)*(1 - x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-13) - 2*a(n-14) + a(n-15).
Previous Showing 11-17 of 17 results.