cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 68 results. Next

A336131 Number of ways to split an integer partition of n into contiguous subsequences all having different sums.

Original entry on oeis.org

1, 1, 2, 6, 9, 20, 44, 74, 123, 231, 441, 681, 1188, 1889, 3110, 5448, 8310, 13046
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(4) = 9 splits:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

The version with equal instead of different sums is A317715.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]

A136158 Triangle whose rows are generated by A136157^n * [1, 1, 0, 0, 0, ...].

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 9, 15, 7, 1, 27, 54, 36, 10, 1, 81, 189, 162, 66, 13, 1, 243, 648, 675, 360, 105, 16, 1, 729, 2187, 2673, 1755, 675, 153, 19, 1, 2187, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 6561, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 16 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [1,2,0,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 17 2007
Equals A080419 when first column is removed (here). - Georg Fischer, Jul 25 2023

Examples

			First few rows of the triangle:
    1;
    1,    1;
    3,    4,    1;
    9,   15,    7,    1;
   27,   54,   36,   10,   1;
   81,  189,  162,   66,  13,   1;
  243,  648,  675,  360, 105,  16,  1;
  729, 2187, 2673, 1755, 675, 153, 19, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A136158:= func< n,k | n eq 0 select 1 else 3^(n-k-1)*(n+2*k)* Binomial(n, k)/n >;
    [A136158(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2023; Dec 27 2023
    
  • Mathematica
    A136158[n_,k_]:= If[n==0, 1, 3^(n-k-1)*(n+2*k)*Binomial[n,k]/n];
    Table[A136158[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2023; Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); 3*T(n-1,k) + T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A136158(n,k): return 1 if (n==0) else 3^(n-k-1)*((n+2*k)/n)*binomial(n, k)
    flatten([[A136158(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 22 2023; Dec 27 2023

Formula

Sum_{k=0..n} T(n, k) = A081294(n).
Given A136157 = M, an infinite lower triangular bidiagonal matrix with (3, 3, 3, ...) in the main diagonal, (1, 1, 1, ...) in the subdiagonal and the rest zeros; rows of A136157 are generated from M^n * [1, 1, 0, 0, 0, ...], given a(0) = 1.
T(n, k) = A038763(n,n-k). - Philippe Deléham, Dec 17 2007
T(n, k) = 3*T(n-1, k) + T(n-1, k-1) for n > 1, T(0,0) = T(1,1) = T(1,0) = 1. - Philippe Deléham, Oct 30 2013
Sum_{k=0..n} T(n, k)*x^k = (1+x)*(3+x)^(n-1), n >= 1. - Philippe Deléham, Oct 30 2013
G.f.: (1-2*x)/(1-3*x-x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 22 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = A006234(n+2).
T(n, 2) = A080420(n-2).
T(n, 3) = A080421(n-3).
T(n, 4) = A080422(n-4).
T(n, 5) = A080423(n-5).
T(n, n) = A000012(n).
T(n, n-1) = A016777(n-1).
T(n, n-2) = A062741(n-1).
Sum_{k=0..n} (-1)^k * T(n, k) = 0^n = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A003688(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A001519(n). (End)
From G. C. Greubel, Dec 27 2023: (Start)
T(n, k) = 3^(n-k-1)*(n+2*k)*binomial(n,k)/n, for n > 0, with T(0, 0) = 1.
T(n, k) = (-1)^k * A164948(n, k). (End)

Extensions

More terms from Philippe Deléham, Dec 17 2007

A238731 Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2014

Keywords

Comments

Unsigned version of A124037 and A126126.
Subtriangle of the triangle given by (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are A001075(n).
Diagonal sums are A133494(n).
Sum_{k=0..n} T(n,k)*x^k = A001519(n), A001075(n), A002320(n), A038723(n), A033889(n) for x = 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Mar 05 2014

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-2*x)/(1-(y+3)*x+x^2). - Philippe Deléham, Mar 05 2014

A336134 Number of ways to split an integer partition of n into contiguous subsequences with strictly increasing sums.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 27, 37, 62, 82, 125, 168, 246, 320, 462, 585, 839, 1078, 1466, 1830, 2528, 3136, 4188, 5210, 6907, 8498, 11177, 13570, 17668, 21614, 27580, 33339, 42817, 51469, 65083, 78457, 98409, 117602, 147106, 174663, 217400, 259318, 319076, 377707
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(6) = 17 splits:
  (1)  (2)    (3)        (4)          (5)            (6)
       (1,1)  (2,1)      (2,2)        (3,2)          (3,3)
              (1,1,1)    (3,1)        (4,1)          (4,2)
              (1),(1,1)  (2,1,1)      (2,2,1)        (5,1)
                         (1,1,1,1)    (3,1,1)        (2,2,2)
                         (1),(1,1,1)  (2,1,1,1)      (3,2,1)
                                      (2),(2,1)      (4,1,1)
                                      (1,1,1,1,1)    (2,2,1,1)
                                      (2),(1,1,1)    (2),(2,2)
                                      (1),(1,1,1,1)  (3,1,1,1)
                                      (1,1),(1,1,1)  (2,1,1,1,1)
                                                     (2),(2,1,1)
                                                     (1,1,1,1,1,1)
                                                     (2),(1,1,1,1)
                                                     (1),(1,1,1,1,1)
                                                     (1,1),(1,1,1,1)
                                                     (1),(1,1),(1,1,1)
		

Crossrefs

The version with equal sums is A317715.
The version with strictly decreasing sums is A336135.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A336133.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f && r > t && t >= s, self()(r,m,t+1,0,0)) + self()(r,m-1,s,t,0) + self()(r-m,min(m,r-m), s,t+m,1))); recurse(n,n,0,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A336139 Number of ways to choose a strict composition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 1, 5, 9, 17, 45, 81, 181, 397, 965, 1729, 3673, 7313, 15401, 34065, 68617, 135069, 266701, 556969, 1061921, 2434385, 4436157, 9120869, 17811665, 35651301, 68949549, 136796317, 283612973, 537616261, 1039994921, 2081261717, 3980842425, 7723253181, 15027216049
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 17 splittings:
  (1)  (2)  (3)      (4)        (5)
            (1,2)    (1,3)      (1,4)
            (2,1)    (3,1)      (2,3)
            (1),(2)  (1),(3)    (3,2)
            (2),(1)  (3),(1)    (4,1)
                     (1),(1,2)  (1),(4)
                     (1),(2,1)  (2),(3)
                     (1,2),(1)  (3),(2)
                     (2,1),(1)  (4),(1)
                                (1),(1,3)
                                (1,2),(2)
                                (1),(3,1)
                                (1,3),(1)
                                (2),(1,2)
                                (2,1),(2)
                                (2),(2,1)
                                (3,1),(1)
		

Crossrefs

The version for partitions is A063834.
Row sums of A072574.
The version for non-strict compositions is A133494.
The version for strict partitions is A279785.
Multiset partitions of partitions are A001970.
Strict compositions are A032020.
Taking a composition of each part of a partition: A075900.
Taking a composition of each part of a strict partition: A304961.
Taking a strict composition of each part of a composition: A307068.
Splittings of partitions are A323583.
Compositions of parts of strict compositions are A336127.
Set partitions of strict compositions are A336140.

Programs

  • Mathematica
    strs[n_]:=Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[strs/@ctn],{ctn,strs[n]}]],{n,0,15}]

A307068 Expansion of 1/(1 - Sum_{k>=1} k!*x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

1, 1, 2, 6, 14, 34, 88, 216, 532, 1322, 3290, 8142, 20192, 50080, 124144, 307878, 763474, 1893038, 4694060, 11639580, 28861736, 71567206, 177460750, 440037738, 1091134276, 2705618900, 6708953156, 16635775698, 41250705518, 102286806130, 253634237896, 628921097352, 1559496588628
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2019

Keywords

Comments

Invert transform of A032020.
Number of ways to choose a strict composition of each part of a composition of n. - Gus Wiseman, Jul 18 2020
The Invert transform T(a) of a sequence a is given by T(a)n = Sum_c Product_i a(c_i), where the sum is over all compositions c of n. - _Gus Wiseman, Aug 01 2020

Examples

			From _Gus Wiseman_, Jul 18 2020: (Start)
The a(1) = 1 through a(4) = 14 ways to choose a strict composition of each part of a composition:
    (1)  (2)      (3)          (4)
         (1),(1)  (1,2)        (1,3)
                  (2,1)        (3,1)
                  (1),(2)      (1),(3)
                  (2),(1)      (2),(2)
                  (1),(1),(1)  (3),(1)
                               (1),(1,2)
                               (1),(2,1)
                               (1,2),(1)
                               (2,1),(1)
                               (1),(1),(2)
                               (1),(2),(1)
                               (2),(1),(1)
                               (1),(1),(1),(1)
(End)
		

Crossrefs

The version for partitions is A270995.
Starting with a strict composition gives A336139.
Strict compositions are counted by A032020.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Compositions of each part of a composition are A133494.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict partitions of each part of a composition are A304969.
Compositions of each part of a strict composition are A336127.
Set partitions of strict compositions are A336140.
Strict compositions of each part of a partition are A336141.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(1 - (&+[Factorial(k)*x^Binomial(k+1,2)/(&*[ 1-x^j: j in [1..k]]): k in [1..m+2]]) ) )); // G. C. Greubel, Jan 25 2024
    
  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
        end:
    g:= proc(n) option remember; add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)) end:
    a:= proc(n) option remember; `if`(n<1, 1,
          add(a(n-i)*g(i), i=1..n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 16 2022
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[k!*x^(k*(k+1)/2)/Product[ (1-x^j), {j,k}], {k,nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def p(x, j): return product(1-x^k for k in range(1,j+1))
    def f(x): return 1/(1 - sum(factorial(j)*x^binomial(j+1,2)/p(x,j) for j in range(1, m+3)) )
    def A307068_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307068_list(m) # G. C. Greubel, Jan 25 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A032020(k)*a(n-k).

A355384 Number of pairs (y, v) where y is a composition of n and v is a (not necessarily contiguous) subsequence of y whose length equals the number of distinct parts in y.

Original entry on oeis.org

1, 1, 2, 4, 12, 30, 66, 164, 419, 1049, 2625, 6372, 15451, 37335, 89855, 216523, 518714, 1235897, 2930050, 6911149, 16217817, 37914515, 88304358, 204971388, 474172899, 1093547574, 2513959446, 5761735383, 13165908506, 29998936859, 68164839887, 154478212575
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2022

Keywords

Comments

If a composition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of compositions.

Examples

			The initial terms count the following containments:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)
                (11)(1)  (21)(21)  (31)(31)
                         (12)(12)  (13)(13)
                         (111)(1)  (22)(2)
                                   (211)(11)
                                   (211)(21)
                                   (121)(11)
                                   (121)(12)
                                   (121)(21)
                                   (112)(11)
                                   (112)(12)
                                   (1111)(1)
		

Crossrefs

The homog. case is A032020, w/o containment A355388 (partitions A355385).
For partitions we have A355383, homog. A000009, w/ multiplicity A339006.
A000244 counts splittings of compositions, for partitions A323583.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,5}]

Extensions

a(21) and beyond from Christian Sievers, May 08 2025

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  7,  15,   9;
  1, 10,  36,  54,   27;
  1, 13,  66, 162,  189,   81;
  1, 16, 105, 360,  675,  648,  243;
  1, 19, 153, 675, 1755, 2673, 2187, 729;
		

Crossrefs

Programs

  • Magma
    A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
    [A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
    Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
    flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023

Formula

T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)

Extensions

More terms from Michel Marcus, Jul 25 2023

A141413 Inverse binomial transform of A140962.

Original entry on oeis.org

0, -1, 1, -3, 9, -27, 81, -243, 729, -2187, 6561, -19683, 59049, -177147, 531441, -1594323, 4782969, -14348907, 43046721, -129140163, 387420489, -1162261467, 3486784401, -10460353203, 31381059609, -94143178827, 282429536481, -847288609443
Offset: 0

Views

Author

Paul Curtz, Aug 04 2008

Keywords

Crossrefs

Cf. A285066 (alternating row sums, starting here with n >= 2). - Wolfdieter Lang, Apr 23 2017

Programs

  • Magma
    [0,-1] cat [(-3)^(n-2): n in [2..30]]; // G. C. Greubel, Mar 30 2021
    
  • Maple
    A141413:= n-> `if`(n<2, -n, (-3)^(n-2)); seq(A141413(n), n=0..30); # G. C. Greubel, Mar 30 2021
  • Mathematica
    CoefficientList[Series[-x(1+2x)/(1+3x), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 24 2013 *)
    Join[{0, -1},LinearRecurrence[{-3},{1},26]] (* Ray Chandler, Aug 12 2015 *)
  • Sage
    [-n if n<2 else (-3)^(n-2) for n in (0..30)] # G. C. Greubel, Mar 30 2021

Formula

a(n) = (-1)^n*A133494(n-1), n>0.
G.f.: (-x)*(1 + 2*x)/(1+3*x). - R. J. Mathar, Nov 11 2008
G.f.: x^2/( Q(0)+ 2*x)- x where Q(k) = 1 - x/(x*(k+1) - 1 )/Q(k+1) ; (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 24 2013
E.g.f.: (exp(-3*x) - (1 + 6*x))/9. - Wolfdieter Lang, Apr 19 2017
a(n) = (-3)^(n-2) for n >= 2, with a(0) = 0 and a(1) = -1. - G. C. Greubel, Mar 30 2021

Extensions

Edited and extended by R. J. Mathar, Nov 11 2008

A140429 a(n) = floor(3^(n-1)).

Original entry on oeis.org

0, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443
Offset: 0

Views

Author

Paul Curtz, Jun 19 2008

Keywords

Comments

Binomial transform of Jacobsthal numbers A001045.
Implicit use in A094555 (Barry).

Crossrefs

Programs

Formula

a(n) = floor(3^(n-1)) = A000244(n-1) = A133494(n), n >= 1.
O.g.f.: x/(1-3x). - R. J. Mathar, Aug 27 2008

Extensions

Extended by R. J. Mathar, Aug 28 2008
New name by M. F. Hasler, Apr 13 2018
Previous Showing 21-30 of 68 results. Next