cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A255125 Number of times a multiple of four is encountered when iterating from 2^(n+1)-2 to (2^n)-2 with the map x -> x - (number of runs in binary representation of x).

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 6, 13, 26, 47, 81, 140, 253, 482, 949, 1875, 3666, 7088, 13614, 26100, 50082, 96246, 185131, 356123, 684758, 1316197, 2530257, 4868019, 9378335, 18096921, 34974646, 67669905, 130998912, 253565649, 490501587, 947992195, 1830664188, 3533571444
Offset: 0

Views

Author

Antti Karttunen, Feb 18 2015

Keywords

Comments

Also the number of even numbers in range [A255062(n) .. A255061(n+1)] of A255057 (equally, in A255067). See the sum-formulas.

Examples

			For n=5 we start iterating with map m(n) = A236840(n) from the initial value (2^(5+1))-2 = 62. Thus we get m(62) = 60, m(60) = 58, m(58) = 54, m(54) = 50, m(50) = 46, m(46) = 42, m(42) = 36, m(36) = 32 and finally m(32) = 30, which is (2^5)-2. Of the nine numbers encountered, only 60, 36 and 32 are multiples of four, thus a(5) = 3.
		

Crossrefs

Programs

  • PARI
    A005811(n) = hammingweight(bitxor(n, n\2));
    write_A255125_and_A255126_and_A255071(n) = { my(k, i, s25, s26); k = (2^(n+1))-2; i = 1; s25 = 0; s26 = 0; while(1, if((k%4),s26++,s25++); k = k - A005811(k); if(!bitand(k+1, k+2), break, i++)); write("b255125.txt", n, " ", s25); write("b255126.txt", n, " ", s26); write("b255071.txt", n, " ", i); };
    for(n=1,42,write_A255125_and_A255126_and_A255071(n));
    
  • Scheme
    (define (A255125 n) (if (zero? n) 1 (let loop ((i (- (expt 2 (+ 1 n)) 4)) (s 0)) (cond ((pow2? (+ 2 i)) s) (else (loop (- i (A005811 i)) (+ s (A133872 i))))))))
    ;; Alternatively:
    (define (A255125 n) (add (COMPOSE A059841 A255057) (A255062 n) (A255061 (+ 1 n))))
    (define (A255125 n) (add (COMPOSE A059841 A255067) (A255062 n) (A255061 (+ 1 n))))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

Formula

a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A059841(A255057(k)).
a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A059841(A255067(k)).
a(n) = A255071(n) - A255126(n).

A134331 Sum of prime factors (counted with multiplicity) of the period numbers defined by A133900.

Original entry on oeis.org

0, 4, 6, 8, 10, 12, 14, 12, 12, 18, 22, 19, 26, 22, 19, 16, 34, 22, 38, 22, 23, 32, 46, 23, 20, 36, 18, 26, 58, 37, 62, 20, 34, 46, 29, 29, 74, 50, 38, 31, 82, 38, 86, 36, 30, 58, 94, 30, 28, 32, 46, 40, 106, 30, 37, 37, 50, 70, 118, 41, 122, 74, 36, 24, 41, 48, 134, 50, 58, 50
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(6)=12, since A133900(6)=72=2*2*2*3*3 and 2+2+2+3+3=12.
a(12)=19, since A133900(12)=864=2*2*2*2*2*3*3*3 and 2+2+2+2+2+3+3+3=19.
		

Crossrefs

A286074 Number of permutations of [n] with nondecreasing cycle sizes.

Original entry on oeis.org

1, 1, 2, 4, 13, 45, 250, 1342, 10085, 76165, 715588, 6786108, 78636601, 896672473, 12112535378, 163963519810, 2534311844905, 39211836764457, 688584972407680, 12003902219337760, 234324625117308533, 4571805253649981173, 98183221386947058286
Offset: 0

Views

Author

Alois P. Heinz, May 01 2017

Keywords

Comments

Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
a(n) mod 2 = A133872(n).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          (j-1)!*b(n-j, j)*binomial(n-1, j-1), j=i..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[(j - 1)!*b[n - j, j]*Binomial[n - 1, j - 1], {j, i, n}]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 25 2018, translated from Maple *)

A182432 Recurrence a(n)*a(n-2) = a(n-1)*(a(n-1) + 3) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 28, 217, 1705, 13420, 105652, 831793, 6548689, 51557716, 405913036, 3195746569, 25160059513, 198084729532, 1559517776740, 12278057484385, 96664942098337, 761041479302308, 5991666892320124, 47172293659258681, 371386682381749321
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The non-linear recurrence equation a(n)*a(n-2) = a(n-1)*(a(n-1) + r) with initial conditions a(0) = 1, a(1) = 1 + r has the solution a(n) = 1/2 + (1/2)*Sum_{k = 0..n} (2*r)^k*binomial(n+k,2*k) = 1/2 + b(n,2*r)/2, where b(n,x) are the Morgan-Voyce polynomials of A085478. The recurrence produces sequences A101265 (r = 1), A011900 (r = 2) and A054318 (r = 4), as well as signed versions of A133872 (r = -1), A109613 (r = -2), A146983 (r = -3) and A084159(r = -4).
Also the indices of centered pentagonal numbers (A005891) which are also centered triangular numbers (A005448). - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Magma
    I:=[1, 4, 28]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, May 18 2012
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==(a[-1+n] (3+a[-1+n]))/a [-2+n]}, a[n],{n,30}] (* or *) LinearRecurrence[{9,-9,1},{1,4,28},30] (* Harvey P. Dale, May 14 2012 *)
  • PARI
    Vec((1-5*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n) = 1/2 + (1/2)*Sum_{k = 0..n} 6^k*binomial(n+k,2*k).
a(n) = R(n,3) where R(n,x) denotes the row polynomials of A211955.
a(n) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(5/2) and T(n,x) the n-th Chebyshev polynomial of the first kind.
Recurrence equation: a(n) = 8*a(n-1) - a(n-2) - 3 with a(0) = 1 and a(1) = 4.
O.g.f.: (1 - 5*x + x^2)/((1 - x)*(1 - 8*x + x^2)) = 1 + 4*x + 28*x^2 + ....
Sum_{n >= 0} 1/a(n) = sqrt(5/3); 5 - 3*(Sum_{k = 0..2*n} 1/a(k))^2 = 2/A070997(n)^2.
a(0) = 1, a(1) = 4, a(2) = 28, a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3). - Harvey P. Dale, May 14 2012

A219977 Expansion of 1/(1+x+x^2+x^3).

Original entry on oeis.org

1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0
Offset: 0

Views

Author

Harvey P. Dale, Dec 02 2012

Keywords

Examples

			G.f. = 1 - x + x^4 - x^5 + x^8 - x^9 + x^12 - x^13 + x^16 - x^17 + x^20 - x^21 + ...
		

Crossrefs

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1+x+x^2+x^3))); // Vincenzo Librandi, Apr 22 2015
  • Mathematica
    CoefficientList[Series[1/(1+x+x^2+x^3),{x,0,80}],x] (* or *) PadRight[{},120,{1,-1,0,0}]
    LinearRecurrence[{-1,-1,-1},{1,-1,0},80] (* Harvey P. Dale, May 22 2021 *)
  • PARI
    {a(n) = [1, -1, 0, 0][n%4 + 1]} /* Michael Somos, Dec 12 2012 */
    
  • PARI
    Vec(1/(1+x+x^2+x^3) + O(x^100)) \\ Michel Marcus, Jan 28 2016
    

Formula

G.f.: 1/(1 +x +x^2 +x^3).
Euler transform of length 4 sequence [ -1, 0, 0, 1]. - Michael Somos, Dec 12 2012
a(n) = a(n+4) = -a(1-n). |a(n)| = A133872(n). REVERT transform is A036765. INVERT transform is A077962. - Michael Somos, Dec 12 2012
A038505(n+2) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Dec 12 2012
From Wesley Ivan Hurt, Apr 22 2015: (Start)
a(n) +a(n-1) +a(n-2) +a(n-3) = 0.
a(n) = (-1)^n/2 +(-1)^(n/2 +1/4 -(-1)^n/4)/2. (End)

A133882 a(n) = binomial(n+2,n) mod 2^2.

Original entry on oeis.org

1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 2^3 = 8.

Crossrefs

For the sequence regarding "binomial(n+2, n) mod 2" see A133872.
A105198 shifted once left.

Programs

Formula

a(n) = binomial(n+2,2) mod 2^2.
G.f.: (1 + 3*x + 2*x^2 + 2*x^3 + 3*x^4 + x^5)/(1-x^8).
G.f.: (1+x)*(1+2*x+2*x^3+x^4)/(1-x^8) = (1+2*x+2*x^3+x^4)/((1-x)*(1+x^2)*(1+x^4)).
a(n) = A105198(n+1). - R. J. Mathar, Jun 08 2008

A134332 Integer part of the arithmetic mean of the prime factors (counted with multiplicity) of the period numbers defined by A133900.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 3, 3, 2, 17, 2, 19, 2, 4, 4, 23, 2, 5, 5, 3, 3, 29, 3, 31, 2, 5, 5, 5, 2, 37, 6, 6, 2, 41, 3, 43, 4, 3, 7, 47, 2, 7, 3, 7, 4, 53, 2, 7, 3, 8, 8, 59, 2, 61, 9, 4, 2, 8, 3, 67, 5, 9, 3, 71, 2, 73, 9, 4, 5, 8, 4, 79, 2, 3, 9, 83, 3, 9, 11, 10, 3, 89, 2, 9, 6, 11, 12
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(6)=2, since floor(A134331(6)/A133911(6))=floor(12/5)=2.
a(7)=7, since floor(A134331(7)/A133911(7))=floor(14/2)=7.
		

Crossrefs

Formula

a(n)=floor(A134331(n)/A133911(n)) for n>1, defining a(1):=1.
a(n)=n, if n is a prime or 1.

A265225 Total number of ON (black) cells after n iterations of the "Rule 54" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 4, 6, 12, 15, 24, 28, 40, 45, 60, 66, 84, 91, 112, 120, 144, 153, 180, 190, 220, 231, 264, 276, 312, 325, 364, 378, 420, 435, 480, 496, 544, 561, 612, 630, 684, 703, 760, 780, 840, 861, 924, 946, 1012, 1035, 1104, 1128, 1200, 1225, 1300, 1326, 1404, 1431
Offset: 0

Views

Author

Robert Price, Dec 05 2015

Keywords

Comments

Take the first 2n positive integers and choose n of them such that their sum: a) is divisible by n, and b) is minimal. It seems their sum equals a(n). - Ivan N. Ianakiev, Feb 16 2019

Examples

			From _Michael De Vlieger_, Dec 14 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row:
                        1                          =  1 ->  1
                      1 1 1                        =  3 ->  4
                    1 . . . 1                      =  2 ->  6
                  1 1 1 . 1 1 1                    =  6 -> 12
                1 . . . 1 . . . 1                  =  3 -> 15
              1 1 1 . 1 1 1 . 1 1 1                =  9 -> 24
            1 . . . 1 . . . 1 . . . 1              =  4 -> 28
          1 1 1 . 1 1 1 . 1 1 1 . 1 1 1            = 12 -> 40
        1 . . . 1 . . . 1 . . . 1 . . . 1          =  5 -> 45
      1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1        = 15 -> 60
    1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1      =  6 -> 66
  1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1    = 18 -> 84
1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1  =  7 -> 91
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Maple
    A265225:=n->1/4*(n+1)*(2*n-(-1)^n+5): seq(A265225(n), n=0..60); # Wesley Ivan Hurt, Dec 25 2016
  • Mathematica
    rule = 54; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule,{{1},0},rows-1,{All,All}][[k]],{rows-k+1,rows+k-1}],{k,1,rows}][[k]]],{k,1,rows}],k]],{k,1,rows}]
    Accumulate[Total /@ CellularAutomaton[54, {{1}, 0}, 52]]

Formula

Conjectures from Colin Barker, Dec 08 2015 and Apr 20 2019: (Start)
a(n) = (n+1)*(2*n -(-1)^n +5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
G.f.: (1+3*x) / ((1-x)^3*(1+x)^2).
(End)
a(n) = n + 1 + (n+1) * floor((n+1)/2), conjectured. - Wesley Ivan Hurt, Dec 25 2016
a(n) = A093353(n) + n + 1, conjectured. - Matej Veselovac, Jan 21 2020

A133906 Least number m such that binomial(n+m, m) mod m = 1.

Original entry on oeis.org

2, 3, 5, 2, 2, 7, 9, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 25, 2, 2, 4, 3, 2, 2, 31, 37, 2, 2, 8, 8, 2, 2, 3, 41, 2, 2, 4, 4, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 4, 4, 2, 2, 67, 3, 2, 2, 44, 44, 2, 2, 16, 16, 2, 2, 3, 4, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 9, 2, 2, 3, 3, 2, 2, 97, 97, 2, 2, 7
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(1)=2, since binomial(1+2, 2) mod 2 = 3 mod 2 = 1 and 2 is the minimal number with this property.
a(7)=9 because of binomial(7+9, 9) = 11440 = 1271*9 + 1, but binomial(7+k, k) mod k <> 1 for all numbers < 9.
		

Crossrefs

Programs

  • Mathematica
    Table[Block[{m = 1}, While[Mod[Binomial[n + m, m], m] != 1, m++]; m], {n, 98}] (* Michael De Vlieger, Jul 30 2018 *)
  • PARI
    a(n) = {my(m = 1, ok = 0); until (ok, if (binomial(n+m, m) % m == 1, ok = 1, m++);); return (m);} \\ Michel Marcus, Jul 15 2013

A168511 Triangle T(n,k), read by rows, given by [0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,...] DELTA [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 4, 8, 0, 0, 4, 10, 12, 16, 0, 0, 8, 24, 36, 32, 32, 0, 0, 16, 56, 101, 112, 80, 64, 0, 0, 32, 128, 270, 360, 320, 192, 128, 0, 0, 64, 288, 696, 1086, 1160, 864, 448, 256, 0, 0, 128, 640, 1744, 3120, 3900, 3488, 2240, 1024, 512
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2009

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0,  2;
  0, 0,  1,  4;
  0, 0,  2,  4,   8;
  0, 0,  4, 10,  12,  16;
  0, 0,  8, 24,  36,  32, 32;
  0, 0, 16, 56, 101, 112, 80, 64;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^(n-k) = A001405(n), A011782(n), A000108(n), A168490(n), A168492(n) for x = -1,0,1,2,3 respectively.

Extensions

Corrected and extended by Philippe Deléham, Mar 20 2013
Previous Showing 21-30 of 58 results. Next