A177700
The n-th derivative of log(1+x)*tanh(x) evaluated at x = 0.
Original entry on oeis.org
0, 0, 2, -3, 0, -10, 160, -756, 2688, -27504, 341248, -3113440, 29004800, -365574144, 5120567296, -69912541440, 1009388355584, -16301637449728, 281310403362816, -5030932957138944, 94747161802047488, -1897026741117419520
Offset: 0
The second derivative is -(tanh(x)/(x+1)^2) + 2*((1 - tanh(x)^2)/(x+1)) - 2*log(x+1)tanh(x)(1 - tanh(x)^2). At x = 0 this sets a(2) = 0 + 2 - 0 = 2.
- L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251. MR0348055
a(0) inserted and keyword:sign added by
R. J. Mathar, May 14 2010
A305786
Inverse Euler transform of (-1)^n * n!.
Original entry on oeis.org
-1, 2, -4, 17, -92, 576, -4156, 34159, -314368, 3199936, -35703996, 433421495, -5687955724, 80256879068, -1211781887796, 19496946534720, -333041104402860, 6019770247224496, -114794574818830716, 2303332661416242633, -48509766592884311132, 1069983257387168051076
Offset: 1
(1-x) * (1-x^2)^(-2) * (1-x^3)^4 * (1-x^4)^(-17) * ... = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 - ... .
A321398
a(n) = (-1)^(n+1)*n!* [x^n](log(x + 1)/2 + log(3*x + 1)/6).
Original entry on oeis.org
0, 1, 2, 10, 84, 984, 14640, 262800, 5513760, 132289920, 3571464960, 107140320000, 3535590643200, 127280784153600, 4963944354969600, 208485575730432000, 9381849600195072000, 450328759886573568000, 22966766398527823872000, 1240205379118128783360000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( -Log((1-x)^3*(1-3*x))/6 )); [0] cat [Factorial(n-0)*b[n]: n in [1..(m-1)]]; // G. C. Greubel, Nov 11 2018
-
ser := series(ln(x+1)/2 + ln(1+3*x)/6, x, 21):
seq((-1)^(n+1)*n!*coeff(ser, x, n), n=0..19);
-
CoefficientList[Series[Log[x+1]/2 + Log[1+3*x]/6, {x, 0, 50}], x]* Table[(-1)^(n+1)*n!, {n, 0, 50}] (* Stefano Spezia, Nov 10 2018 *)
-
seq(n)={Vec(serlaplace(-log(1 - x + O(x^n))/2 - log(1 - 3*x + O(x^n))/6), -n)} \\ Andrew Howroyd, Nov 10 2018
A331725
E.g.f.: exp(x/(1 - x)) / (1 + x).
Original entry on oeis.org
1, 0, 3, 4, 57, 216, 2755, 18348, 247569, 2368432, 35256771, 436248660, 7235178313, 108919083144, 2010150360387, 35421547781116, 723689454172065, 14543895730321248, 326843345169621379, 7354350135365751972, 180610925178770615001, 4488323611011676811320
Offset: 0
-
A331725 := proc(n)
add((-1)^k*binomial(n,k)*k!*A000262(n-k),k=0..n) ;
end proc:
seq(A331725(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
-
nmax = 21; CoefficientList[Series[Exp[x/(1 - x)]/(1 + x), {x, 0, nmax}], x] Range[0, nmax]!
A000262[n_] := If[n == 0, 1, n! Sum[Binomial[n - 1, k]/(k + 1)!, {k, 0, n - 1}]]; a[n_] := Sum[(-1)^k Binomial[n, k] k! A000262[n - k], {k, 0, n}]; Table[a[n], {n, 0, 21}]
a[n_] := (-1)^n n! (1 - Sum[(-1)^j*LaguerreL[j, 1, -1]/(j+1), {j,0,n-1}]);
Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 20 2022 *)
-
seq(n)={Vec(serlaplace(exp(x/(1 - x) + O(x*x^n)) / (1 + x)))} \\ Andrew Howroyd, Jan 25 2020
-
def gen_a():
F, L, S, N = 1, 1, 1, 1
while True:
yield F * S
L = gen_laguerre(N - 1, 1, -1) / N
S += L if F < 0 else -L
F *= -N; N += 1
a = gen_a(); print([next(a) for in range(21)]) # _Peter Luschny, Feb 20 2022
A265313
Square array read by ascending antidiagonals, complementary Bell numbers iterated by the Bell transform.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, -1, 0, 1, 1, -1, 2, 1, 1, 1, -1, 2, -4, 1, 1, 1, -1, 2, -6, 9, -2, 1, 1, -1, 2, -6, 22, -22, -9, 1, 1, -1, 2, -6, 24, -95, 54, -9, 1, 1, -1, 2, -6, 24, -118, 472, -139, 50, 1, 1, -1, 2, -6, 24, -120, 683, -2638, 372, 267, 1, 1, -1, 2, -6, 24
Offset: 0
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] A000012
[ 1, -1, 0, 1, 1, -2, -9, -9, 50, ...] A000587
[ 1, -1, 2, -4, 9, -22, 54, -139, 372, ...] A265023
[ 1, -1, 2, -6, 22, -95, 472, -2638, 16343, ...]
[ 1, -1, 2, -6, 24, -118, 683, -4533, 33862, ...]
[ 1, -1, 2, -6, 24, -120, 718, -4989, 39405, ...]
[... ...]
[ 1, -1, 2, -6, 24, -120, 720, -5040, 40320, ...] A133942
-
# uses[bell_transform from A264428]
def complementary_bell_number_matrix(ord, len):
b = [1]*len; L = [b]
for k in (1..ord-1):
b = [sum((-1)^n*c for (n, c) in enumerate(bell_transform(n, b))) for n in range(len)]
L.append(b)
return matrix(ZZ, L)
print(complementary_bell_number_matrix(6,9))
A302190
Hurwitz logarithm of natural numbers 1,2,3,4,5,...
Original entry on oeis.org
0, 2, -1, 2, -6, 24, -120, 720, -5040, 40320, -362880, 3628800, -39916800, 479001600, -6227020800, 87178291200, -1307674368000, 20922789888000, -355687428096000, 6402373705728000, -121645100408832000, 2432902008176640000, -51090942171709440000
Offset: 0
-
# first load Maple commands for Hurwitz operations from link
s:=[seq(n,n=1..64)];
Hlog(s);
-
A = PowerSeriesRing(QQ, 'x')
f = A(list(range(1,30))).ogf_to_egf().log()
print(list(f.egf_to_ogf()))
# F. Chapoton, Apr 11 2020
A355007
Triangle read by rows. T(n, k) = n^k * |Stirling1(n, k)|.
Original entry on oeis.org
1, 0, 1, 0, 2, 4, 0, 6, 27, 27, 0, 24, 176, 384, 256, 0, 120, 1250, 4375, 6250, 3125, 0, 720, 9864, 48600, 110160, 116640, 46656, 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543, 0, 40320, 836352, 6723584, 27725824, 64225280, 84410368, 58720256, 16777216
Offset: 0
Table T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 2, 4;
[3] 0, 6, 27, 27;
[4] 0, 24, 176, 384, 256;
[5] 0, 120, 1250, 4375, 6250, 3125;
[6] 0, 720, 9864, 48600, 110160, 116640, 46656;
[7] 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543;
-
seq(seq(n^k*abs(Stirling1(n, k)), k = 0..n), n = 0..9);
-
T[n_, k_] := If[n == k == 0, 1, n^k * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 17 2022 *)
A138160
A triangular sequence of coefficients of the expansion of a Green's function for the radial Morse potential with x being the kinetic energy and t being the radius: Hamiltonian; H=K+V=x+Exp[-2*t]-2*Exp[t];G*Exp[t*x)=Exp[x*t]/(t-H); p(t,x)=Exp[t*x]/(t-x-Exp[-2*t] + 2*Exp[-t]).
Original entry on oeis.org
1, -1, 1, -1, 4, -4, 3, -2, 1, -24, 36, -27, 13, -6, 3, -1, 182, -354, 330, -198, 85, -28, 10, -4, 1, -1730, 4090, -4480, 3120, -1595, 631, -195, 50, -15, 5, -1, 19802, -55270, 70430, -55730, 31630, -14018, 5101, -1536, 375, -80, 21, -6, 1, -264334, 850990, -1246504, 1121960, -711480, 345268, -135639, 44997, -12922, 3171, -644, 119, -28, 7, -1
Offset: 1
Triangle begins:
{1},
{-1, 1, -1},
{4, -4, 3, -2, 1},
{-24, 36, -27, 13, -6, 3, -1},
{182, -354, 330, -198, 85, -28, 10, -4, 1},
{-1730, 4090, -4480, 3120, -1595, 631, -195, 50, -15, 5, -1},
{19802, -55270, 70430, -55730, 31630, -14018, 5101, -1536, 375, -80, 21, -6, 1},
{-264334, 850990, -1246504, 1121960, -711480, 345268, -135639, 44997, -12922, 3171, -644, 119, -28, 7, -1},
...
- A. Messiah, Quantum mechanics, vol. 2, page 712, 795-800, North Holland, 1969.
-
p[t_, x_] = FullSimplify[Exp[t*x]/(t - x - Exp[ -2*t] + 2*Exp[ -t])] g = Table[ FullSimplify[ExpandAll[n!*(1 - x)^(n + 1)*SeriesCoefficient[ Series[p[t, x], {t, 0, 30}], n]]], {n, 0, 10}]; a = Table[CoefficientList[FullSimplify[ExpandAll[n!*(1 - x)^(n + 1)*SeriesCoefficient[Series[p[t, x], {t, 0, 30}], n]]], x], {n, 0, 10}]; Flatten[a]
A165233
Signed denominators of terms in series expansion of cos(x)+sin(x).
Original entry on oeis.org
1, 1, -2, -6, 24, 120, -720, -5040, 40320, 362880, -3628800, -39916800, 479001600, 6227020800, -87178291200, -1307674368000, 20922789888000, 355687428096000, -6402373705728000, -121645100408832000, 2432902008176640000
Offset: 0
-
Sign@ # Denominator@ # & /@ CoefficientList[Series[Cos@ x + Sin@ x, {x, 0, 20}], x] (* Michael De Vlieger, Oct 08 2016 *)
-
a(n)=(-1)^(n\2)*n!
A358624
Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1).
Original entry on oeis.org
1, 1, 2, 2, 6, 6, 6, 22, 30, 20, 24, 100, 170, 140, 70, 120, 548, 1050, 1120, 630, 252, 720, 3528, 7476, 8820, 6720, 2772, 924, 5040, 26136, 59388, 78708, 64680, 37884, 12012, 3432, 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870
Offset: 0
[0] 1;
[1] 1, 2;
[2] 2, 6, 6;
[3] 6, 22, 30, 20;
[4] 24, 100, 170, 140, 70;
[5] 120, 548, 1050, 1120, 630, 252;
[6] 720, 3528, 7476, 8820, 6720, 2772, 924;
[7] 5040, 26136, 59388, 78708, 64680, 37884, 12012, 3432;
[8] 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870;
- A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag Berlin Heidelberg, 1991.
-
H := (n, x) -> n!*hypergeom([-x, -n, n + 1], [1, 1], 1):
for n from 0 to 8 do seq(coeff(simplify(H(n, x)), x, k), k = 0..n) od;
Comments