cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A088725 Numbers having no divisors d>1 such that also d+1 is a divisor.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

Complement of A088723.
Union of A132895 and A005408, the odd numbers. - Ray Chandler, May 29 2008
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 9, 79, 778, 7782, 77813, 778055, 7780548, 77805234, 778052138, 7780519314, ... . Apparently, the asymptotic density of this sequence exists and equals 0.77805... . - Amiram Eldar, Jun 14 2022

Examples

			From _Gus Wiseman_, Oct 16 2019: (Start)
The sequence of terms together with their divisors > 1 begins:
   1: {}
   2: {2}
   3: {3}
   4: {2,4}
   5: {5}
   7: {7}
   8: {2,4,8}
   9: {3,9}
  10: {2,5,10}
  11: {11}
  13: {13}
  14: {2,7,14}
  15: {3,5,15}
  16: {2,4,8,16}
  17: {17}
  19: {19}
  21: {3,7,21}
  22: {2,11,22}
  23: {23}
  25: {5,25}
(End)
		

Crossrefs

Positions of 0's and 1's in A129308.
Positions of 0's and 1's in A328457 (also).
Numbers whose divisors (including 1) have no non-singleton runs are A005408.
The number of runs of divisors of n is A137921(n).
The longest run of divisors of n has length A055874(n).

Programs

  • Mathematica
    Select[Range[100],FreeQ[Differences[Rest[Divisors[#]]],1]&] (* Harvey P. Dale, Sep 16 2017 *)
  • PARI
    isok(n) = {my(d=setminus(divisors(n), [1])); #setintersect(d, apply(x->x+1, d)) == 0;} \\ Michel Marcus, Oct 28 2019

Formula

A088722(a(n)) = 0.

Extensions

Extended by Ray Chandler, May 29 2008

A328166 Heinz number of the run-lengths of the divisors of n.

Original entry on oeis.org

2, 3, 4, 6, 4, 10, 4, 12, 8, 12, 4, 28, 4, 12, 16, 24, 4, 40, 4, 36, 16, 12, 4, 112, 8, 12, 16, 48, 4, 120, 4, 48, 16, 12, 16, 224, 4, 12, 16, 144, 4, 120, 4, 48, 64, 12, 4, 448, 8, 48, 16, 48, 4, 160, 16, 144, 16, 12, 4, 832, 4, 12, 64, 96, 16, 160, 4, 48, 16
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2019

Keywords

Comments

The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k).

Examples

			Splitting the divisors of 30 into runs gives {{1, 2, 3}, {5, 6}, {10}, {15}, {30}}, and the Heinz number of {1, 1, 1, 2, 3} is 120, so a(30) = 120.
More examples from _Antti Karttunen_, Dec 09 2021: (Start)
Splitting the divisors of 1 into runs gives {1}, and the Heinz number of that is 2.
Splitting the divisors of 2 into runs gives {1, 2}, and the Heinz number of that is 3. [one run of length 2, therefore a(2) = prime(2)^1].
Splitting the divisors of 3 into runs gives {1} and {3}, and the Heinz number of that is 4. [two runs of length 1, therefore a(3) = prime(1)^2].
Splitting the divisors of 4 into runs gives {1, 2} and {4}, and the Heinz number of that is 6. [one run of length 1, and other run of length 2, therefore a(4) = prime(1)*prime(2)].
Splitting the divisors of 5 into runs gives {1} and {5}, and the Heinz number of that is 4. [two runs of length 1, therefore a(5) = prime(1)^2].
(End)
		

Crossrefs

The longest run of divisors of n has length A055874(n).
Numbers whose divisors > 1 have no non-singleton runs are A088725.
The number of successive pairs of divisors of n is A129308(n).
The Heinz number of the set of divisors of n is A275700(n).
Numbers whose divisors do not have weakly decreasing run-lengths are A328165.

Programs

  • Mathematica
    Table[Times@@Prime/@Length/@Split[Divisors[n],#2==#1+1&],{n,30}]
  • PARI
    A328166(n) = { my(rl=0,pd=0,v=vector(numdiv(n)),m=1); fordiv(n, d, if(d>(1+pd), v[rl]++; rl=0); pd=d; rl++); v[rl]++; for(i=1,#v, m *= prime(i)^v[i]); (m); }; \\ Antti Karttunen, Dec 09 2021

Formula

A001222(a(n)) = A137921(n).
A056239(a(n)) = A000005(n).

A356607 Number of strict integer partitions of n with at least one neighborless part.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 20, 24, 30, 36, 41, 52, 60, 71, 84, 100, 114, 137, 158, 183, 214, 248, 283, 330, 379, 432, 499, 570, 648, 742, 846, 955, 1092, 1234, 1395, 1580, 1786, 2005, 2270, 2548, 2861, 3216, 3610, 4032, 4526, 5055, 5642, 6304, 7031, 7820, 8720, 9694
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2022

Keywords

Comments

A part x is neighborless if neither x - 1 nor x + 1 are parts.

Examples

			The a(0) = 0 through a(9) = 6 partitions:
  .  (1)  (2)  (3)  (4)   (5)   (6)   (7)    (8)    (9)
                    (31)  (41)  (42)  (52)   (53)   (63)
                                (51)  (61)   (62)   (72)
                                      (421)  (71)   (81)
                                             (431)  (531)
                                             (521)  (621)
		

Crossrefs

This is the strict case of A356235 and A356236.
The complement is counted by A356606, non-strict A355393 and A355394.
A000041 counts integer partitions, strict A000009.
A000837 counts relatively prime partitions, ranked by A289509.
A007690 counts partitions with no singletons, complement A183558.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]

Extensions

a(31)-a(59) from Lucas A. Brown, Sep 09 2022

A356232 Numbers whose prime indices are all odd and cover an initial interval of odd positive integers.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 110, 128, 160, 200, 220, 250, 256, 320, 400, 440, 500, 512, 550, 640, 800, 880, 1000, 1024, 1100, 1210, 1250, 1280, 1600, 1760, 1870, 2000, 2048, 2200, 2420, 2500, 2560, 2750, 3200, 3520, 3740, 4000, 4096, 4400
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also positions of first appearances of rows in A356226.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
     10: {1,3}
     16: {1,1,1,1}
     20: {1,1,3}
     32: {1,1,1,1,1}
     40: {1,1,1,3}
     50: {1,3,3}
     64: {1,1,1,1,1,1}
     80: {1,1,1,1,3}
    100: {1,1,3,3}
    110: {1,3,5}
    128: {1,1,1,1,1,1,1}
    160: {1,1,1,1,1,3}
    200: {1,1,1,3,3}
    220: {1,1,3,5}
    250: {1,3,3,3}
    256: {1,1,1,1,1,1,1,1}
    320: {1,1,1,1,1,1,3}
    400: {1,1,1,1,3,3}
		

Crossrefs

The partitions with these Heinz numbers are counted by A053251.
This is the odd restriction of A055932.
A subset of A066208 (numbers with all odd prime indices).
This is the sorted version of A356603.
These are the positions of first appearances of rows in A356226. Other statistics are:
- length: A287170, firsts A066205
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232 (this sequence)
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[1000],normQ[(primeMS[#]+1)/2]&]

A356069 Number of divisors of n whose prime indices cover an interval of positive integers (A073491).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 4, 5, 2, 6, 2, 4, 3, 3, 2, 8, 3, 3, 4, 4, 2, 7, 2, 6, 3, 3, 4, 9, 2, 3, 3, 5, 2, 5, 2, 4, 6, 3, 2, 10, 3, 4, 3, 4, 2, 8, 3, 5, 3, 3, 2, 10, 2, 3, 4, 7, 3, 5, 2, 4, 3, 5, 2, 12, 2, 3, 6, 4, 4, 5, 2, 6, 5, 3, 2, 7, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

First differs from A000005 at 10, 14, 20, 21, 22, ... = A307516.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) counted divisors of n = 1, 2, 4, 6, 12, 16, 24, 30, 36, 48, 72, 90:
  1   2   4   6  12  16  24  30  36  48  72  90
      1   2   3   6   8  12  15  18  24  36  45
          1   2   4   4   8   6  12  16  24  30
              1   3   2   6   5   9  12  18  18
                  2   1   4   3   6   8  12  15
                  1       3   2   4   6   9   9
                          2   1   3   4   8   6
                          1       2   3   6   5
                                  1   2   4   3
                                      1   3   2
                                          2   1
                                          1
		

Crossrefs

These divisors belong to A073491, a superset of A055932, complement A073492.
The initial case is A356224.
The complement in the initial case is counted by A356225.
A000005 counts divisors.
A001223 lists the prime gaps.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A328338 has third-largest divisor prime.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    Table[Length[Select[Divisors[n],nogapQ[primeMS[#]]&]],{n,100}]

A356228 Greatest size of a gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 3, 1, 2, 1, 2, 3, 1, 1, 5, 2, 2, 1, 2, 1, 4, 1, 3, 1, 1, 1, 4, 1, 1, 2, 6, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 3, 2, 2, 2, 1, 4, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless intervals: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 700 are {1,1,3,3,4}, with maximal gapless submultisets {1,1}, {3,3,4}, so a(700) = 3.
The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 3.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-maxima of A356226, firsts A356232.
The smallest instead of greatest size is A356227.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356069 counts gapless divisors.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Max@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333766(A356230(n)).
a(n) = A061395(A356231(n)).

A356603 Position in A356226 of first appearance of the n-th composition in standard order (row n of A066099).

Original entry on oeis.org

1, 2, 4, 10, 8, 20, 50, 110, 16, 40, 100, 220, 250, 550, 1210, 1870, 32, 80, 200, 440, 500, 1100, 2420, 3740, 1250, 2750, 6050, 9350, 13310, 20570, 31790, 43010, 64, 160, 400, 880, 1000, 2200, 4840, 7480, 2500, 5500, 12100, 18700, 26620, 41140, 63580, 86020
Offset: 0

Views

Author

Gus Wiseman, Aug 30 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The image consists of all numbers whose prime indices are odd and cover an initial interval of odd positive integers.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     10: {1,3}
      8: {1,1,1}
     20: {1,1,3}
     50: {1,3,3}
    110: {1,3,5}
     16: {1,1,1,1}
     40: {1,1,1,3}
    100: {1,1,3,3}
    220: {1,1,3,5}
    250: {1,3,3,3}
    550: {1,3,3,5}
   1210: {1,3,5,5}
   1870: {1,3,5,7}
		

Crossrefs

See link for sequences related to standard compositions.
The partitions with these Heinz numbers are counted by A053251.
A subset of A066208 (numbers with all odd prime indices).
Up to permutation, these are the positions of first appearances of rows in A356226. Other statistics are:
- length: A287170, firsts A066205
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
The sorted version is A356232.
An ordered version is counted by A356604.
A001221 counts distinct prime factors, sum A001414.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=1/2 Total[2^Accumulate[Reverse[q]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    sq=stcinv/@Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,1000}];
    Table[Position[sq,k][[1,1]],{k,0,mnrm[Rest[sq]]}]

A356227 Smallest size of a maximal gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 1, 1, 1, 1, 4, 2, 1, 3, 1, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 1.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-minima of A356226, firsts A356232.
The greatest instead of smallest size is A356228.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Min@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333768(A356230(n)).
a(n) = A055396(A356231(n)).

A356841 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 68, 72, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and their corresponding standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
  18: (3,2)
  20: (2,3)
  21: (2,2,1)
		

Crossrefs

See link for sequences related to standard compositions.
An unordered version is A073491, complement A073492.
These compositions are counted by A107428.
The complement is A356842.
The non-initial case is A356843, unordered A356845.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],nogapQ[stc[#]]&]

A356843 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless) but contains no 1's.

Original entry on oeis.org

2, 4, 8, 10, 16, 18, 20, 32, 36, 42, 64, 68, 72, 74, 82, 84, 128, 136, 146, 148, 164, 170, 256, 264, 272, 274, 276, 290, 292, 296, 298, 324, 328, 330, 338, 340, 512, 528, 548, 580, 584, 586, 594, 596, 658, 660, 676, 682, 1024, 1040, 1056, 1092, 1096, 1098
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their corresponding standard compositions begin:
    2: (2)
    4: (3)
    8: (4)
   10: (2,2)
   16: (5)
   18: (3,2)
   20: (2,3)
   32: (6)
   36: (3,3)
   42: (2,2,2)
   64: (7)
   68: (4,3)
   72: (3,4)
   74: (3,2,2)
   82: (2,3,2)
   84: (2,2,3)
		

Crossrefs

See link for sequences related to standard compositions.
A subset of A022340.
These compositions are counted by A251729.
The unordered version (using Heinz numbers of partitions) is A356845.
A333217 ranks complete compositions.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356841 ranks gapless compositions, counted by A107428.
A356842 ranks non-gapless compositions, counted by A356846.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],!MemberQ[stc[#],1]&&nogapQ[stc[#]]&]

Formula

Complement of A333217 in A356841.
Previous Showing 11-20 of 31 results. Next