cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A022493 Fishburn numbers: number of linearized chord diagrams of degree n; also number of nonisomorphic interval orders on n unlabeled points.

Original entry on oeis.org

1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, 1422074, 10886503, 89903100, 796713190, 7541889195, 75955177642, 810925547354, 9148832109645, 108759758865725, 1358836180945243, 17801039909762186, 243992799075850037, 3492329741309417600, 52105418376516869150, 809029109658971635142
Offset: 0

Views

Author

Alexander Stoimenow (stoimeno(AT)math.toronto.edu)

Keywords

Comments

Claesson and Linusson calls these the Fishburn numbers, after Peter Fishburn. [Peter Clingerman Fishburn (1936-2021) was an American mathematician and a pioneer in the field of decision-making processes. - Amiram Eldar, Jun 20 2021]
Also, number of unlabeled (2+2)-free posets.
Also, number of upper triangular matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n. - Vladeta Jovovic, Mar 10 2008
Row sums of A193387.
Also number of ascent sequences of length n. - N. J. A. Sloane, Dec 10 2011
An ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) where asc(.) counts the ascents of its argument. - Joerg Arndt, Oct 17 2012
Replacing the function asc(.) above by a function chg(.) that counts changes in the prefix gives A000522 (arrangements). - Joerg Arndt, May 10 2013
Number of restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n-1)] such that d(0)=0, 0 <= d(k) <= k, and d(j) != d(k)+1 for j < k. - Joerg Arndt, May 10 2013
Number of permutations p(1),p(2),...,p(n) having no subsequence p(i),p(j),p(k) such that i+1 = j < k and p(k)+1 = p(i) < p(j); this corresponds to the avoidance of bivincular pattern (231,{1},{1}) in the terminology of Parviainen. Also, number of permutations p(1),...,p(n) with no subsequence p(i),p(j),p(k) with i+1 = j < k, p(i)+1 = p(k) < p(j). This is the bivincular pattern (132,{1},{1}). Proved by Bousquet-Mélou et al. and by Parviainen, respectively. - Vít Jelínek, Sep 05 2014

Examples

			From _Emanuele Munarini_, Oct 16 2012: (Start)
There are a(4)=15 ascent sequences (dots for zeros):
  01:  [ . . . . ]
  02:  [ . . . 1 ]
  03:  [ . . 1 . ]
  04:  [ . . 1 1 ]
  05:  [ . . 1 2 ]
  06:  [ . 1 . . ]
  07:  [ . 1 . 1 ]
  08:  [ . 1 . 2 ]
  09:  [ . 1 1 . ]
  10:  [ . 1 1 1 ]
  11:  [ . 1 1 2 ]
  12:  [ . 1 2 . ]
  13:  [ . 1 2 1 ]
  14:  [ . 1 2 2 ]
  15:  [ . 1 2 3 ]
(End)
From _Joerg Arndt_, May 10 2013: (Start)
There are a(4)=15 RGS of length 4 such that d(0)=0, 0 <= d(k) <= k, and d(j) != d(k)+1 for j < k (dots for zeros):
  01:  [ . . . . ]
  02:  [ . . . 1 ]
  03:  [ . . . 2 ]
  04:  [ . . . 3 ]
  05:  [ . . 1 1 ]
  06:  [ . . 1 2 ]
  07:  [ . . 1 3 ]
  08:  [ . . 2 . ]
  09:  [ . . 2 2 ]
  10:  [ . . 2 3 ]
  11:  [ . 1 1 1 ]
  12:  [ . 1 1 2 ]
  13:  [ . 1 1 3 ]
  14:  [ . 1 2 2 ]
  15:  [ . 1 2 3 ]
(End)
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 53*x^5 + 217*x^6 + 1014*x^7 + 5335*x^8 + ...
		

References

  • P. C. Fishburn, Interval Graphs and Interval Orders, Wiley, New York, 1985.

Crossrefs

Cf. A079144 for the labeled analog, A059685, A035378.
Cf. A138265.
Cf. A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Row sums of A294219, main diagonal of A294220.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1,
          add(b(n-1, j, t+`if`(j>i,1,0)), j=0..t+1))
        end:
    a:= n-> b(n-1, 0, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    max = 22; f[x_] := Sum[ Product[ 1-(1-x)^j, {j, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}] ]; a[n_] := b[n-1, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
  • Maxima
    F(x,n) := remainder(sum(product(1-(1-x)^i,i,1,k),k,0,n),x^(n+1));
    makelist(coeff(F(x,n),x^n),n,0,20); /* Emanuele Munarini, Oct 16 2012 */
    
  • PARI
    {a(n) = polcoeff( sum(i=0, n, prod(j=1, i, 1 - (1-x)^j, 1 + x * O(x^n))), n)}; /* Michael Somos, Jul 21 2006 */
    
  • Sage
    # Program adapted from Alois P. Heinz's Maple code.
    # b(n,i,t) gives the number of length-n postfixes of ascent sequences
    # with a prefix having t ascents and last element i.
    @CachedFunction
    def b(n, i, t):
        if n <= 1: return 1
        return sum(b(n - 1, j, t + (j > i)) for j in range(t + 2))
    def a(n): return b(n, 0, 0)
    [a(n) for n in range(66)]
    # Joerg Arndt, May 11 2013

Formula

Zagier gives the g.f. Sum_{n>=0} Product_{i=1..n} (1-(1-x)^i).
Another formula for the g.f.: Sum_{n>=0} 1/(1-x)^(n+1) Product_{i=1..n} (1-1/(1-x)^i)^2. Proved by Andrews-Jelínek and Bringmann-Li-Rhoades. - Vít Jelínek, Sep 05 2014
Coefficients in expansion of Sum_{k>=0} Product_{j=1..k} (1-x^j) about x=1 give (-1)^n*a(n). - Bill Gosper, Aug 08 2001
G.f.: 1 + x*Q(0), where Q(k) = 1 + (1-(1-x)^(2*k+2))/(1 - (1-(1-x)^(2*k+3))/(1 -(1-x)^(2*k+3) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f. (conjecture): Q(0), where Q(k) = 1 + (1 - (1-x)^(2*k+1))/(1 - (1-(1-x)^(2*k+2))/(1 -(1-x)^(2*k+2) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f.: 1 + z(1)/( 1+0 - z(2)/( 1+z(2) - z(3)/( 1+z(3) - z(4)/( 1+z(4) - z(5)/(...))))) where z(k) = 1 - (1-x)^k; this is Euler's continued fraction for 1 + z(1) + z(1)*z(2) + z(1)*z(2)*z(3) + ... . - Joerg Arndt, Mar 11 2014
Asymptotics (proved by Zagier, 2001; see also Brightwell and Keller, 2011): a(n) ~ (12*sqrt(3)*exp(Pi^2/12)/Pi^(5/2)) * n!*sqrt(n)*(6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014 [edited by Vít Jelínek, Sep 05 2014]
For any prime p that is not a quadratic residue mod 23, there is at least one value of j such that for all k and m, we have a(p^k*m - j) mod p^k = 0. E.g., for p=5 one may take j=1 and k=2, and conclude that a(25-1), a(50-1), a(75-1), a(100-1), ... are multiples of 25. See Andrews-Sellers, Garvan, and Straub. - Vít Jelínek, Sep 05 2014
From Peter Bala, Dec 17 2021: (Start)
Conjectural g.f.s:
A(x) = Sum_{n >= 1} n*(1 - x)^n*Product_{k = 1..n-1} (1 - (1 - x)^k).
x*A(x) = 1 - Sum_{n >= 1} n*(1 - x)^(2*n+1)*Product_{k = 1..n-1} (1 - (1 - x)^k). (End)

Extensions

Edited by N. J. A. Sloane, Nov 05 2011

A005321 Upper triangular n X n (0,1)-matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 10, 122, 3346, 196082, 23869210, 5939193962, 2992674197026, 3037348468846562, 6189980791404487210, 25285903982959247885402, 206838285372171652078912306, 3386147595754801373061066905042, 110909859519858523995273393471390010
Offset: 0

Views

Author

Keywords

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column sums of A137252.

Programs

  • Mathematica
    max = 14; f[x_] := Sum[ x^n*Product[ (2^i-1) / (1+(2^i-1)*x), {i, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011, after Vladeta Jovovic *)
  • PARI
    a(n) = 1 + sum(k=2, n, binomial(n,k)*sum(i=2, k, (-1)^i*prod(j=i+1, k, 2^j - 1))); \\ Michel Marcus, Oct 13 2019

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A005327(k+1).
G.f.: Sum_{n >= 0} x^n*Product_{i = 1..n} ((2^i-1)/(1 + (2^i-1)*x)). - Vladeta Jovovic, Mar 10 2008
From Peter Bala, Jul 06 2017: (Start)
Two conjectural continued fractions for the o.g.f.:
1/(1 - x/(1 - x/(1 - 6*x/(1 - 9*x/(1 - 28*x/(1 - 49*x/(1 - ... - 2^(n-1)*(2^n - 1)*x/(1 - (2^n - 1)^2*x/(1 - ...)))))))));
1 + x/(1 - 2*x/(1 - 3*x/(1 - 12*x/(1 - 21*x/(1 - ... - 2^n*(2^n - 1)*x/(1 - (2^(n+1) - 1)*(2^n - 1)*x/(1 - ...))))))). Cf. A289314 and A289315. (End)
a(n) = (-1)^n*Sum_{k=0..n} qS2(n,k)*[k]!*(-1)^k, where qS2(n,k) is the triangle A139382, and [k]! is q-factorial, q=2. - Vladimir Kruchinin, Oct 10 2019
a(n) = 1 + Sum_{k=2..n} binomial(n,k)*Sum{i=2..k} (-1)^i*Product_{j=i+1..k} (2^j - 1). See Greenough. - Michel Marcus, Oct 13 2019

Extensions

More terms from Max Alekseyev, Apr 27 2010

A242153 Number T(n,k) of ascent sequences of length n with exactly k flat steps; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 16, 20, 12, 4, 1, 0, 61, 80, 50, 20, 5, 1, 0, 271, 366, 240, 100, 30, 6, 1, 0, 1372, 1897, 1281, 560, 175, 42, 7, 1, 0, 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0, 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Comments

In general, column k is asymptotic to Pi^(2*k-5/2) / (k! * 6^(k-2) * sqrt(3) * exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

Examples

			Triangle T(n,k) begins:
00:      1;
01:      1,     0;
02:      1,     1,     0;
03:      2,     2,     1,     0;
04:      5,     6,     3,     1,    0;
05:     16,    20,    12,     4,    1,    0;
06:     61,    80,    50,    20,    5,    1,   0;
07:    271,   366,   240,   100,   30,    6,   1,  0;
08:   1372,  1897,  1281,   560,  175,   42,   7,  1, 0;
09:   7795, 10976,  7588,  3416, 1120,  280,  56,  8, 1, 0;
10:  49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0;
...
The 15 ascent sequences of length 4 (dots denote zeros) with their number of flat steps are:
01:  [ . . . . ]   3
02:  [ . . . 1 ]   2
03:  [ . . 1 . ]   1
04:  [ . . 1 1 ]   2
05:  [ . . 1 2 ]   1
06:  [ . 1 . . ]   1
07:  [ . 1 . 1 ]   0
08:  [ . 1 . 2 ]   0
09:  [ . 1 1 . ]   1
10:  [ . 1 1 1 ]   2
11:  [ . 1 1 2 ]   1
12:  [ . 1 2 . ]   0
13:  [ . 1 2 1 ]   0
14:  [ . 1 2 2 ]   1
15:  [ . 1 2 3 ]   0
There are 5 sequences without flat steps, 6 with one flat step, etc., giving row [5, 6, 3, 1, 0] for n=4.
		

Crossrefs

Row sums give A022493.
T(2n,n) gives A242164.
Main diagonal and lower diagonals give: A000007, A000012, A000027(n+1), A002378(n+1), A134481(n+1), A130810(n+4).
Cf. A137251 (the same for ascents), A238858 (the same for descents).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(j=i, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == i, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][ b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)

A079144 Number of labeled interval orders on n elements: (2+2)-free posets.

Original entry on oeis.org

1, 1, 3, 19, 207, 3451, 81663, 2602699, 107477247, 5581680571, 356046745023, 27365431508779, 2494237642655487, 266005087863259291, 32815976815540917183, 4636895313201764853259, 743988605732990946684927
Offset: 0

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

Keywords

Comments

From Peter Bala, Dec 26 2021: (Start)
We make the following conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 8 begins [1, 1, 3, 3, 7, 3, 7, 3, 7, ...] and appears to have a pre-period of length 3 and a period of length 2 = (1/2)*phi(8).
2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients. (End)

Examples

			1 + x + 3*x^2 + 19*x^3 + 207*x^4 + 3451*x^5 + 81663*x^6 + 2602699*x^7 + ...
		

Crossrefs

Cf. A022493 (unlabeled interval orders).
Cf. A002439 (Glaisher's T numbers), A002114 (Glaisher's H numbers).

Programs

  • Maple
    A002439 := proc(n) option remember; if n = 0 then 1; else (-4)^n-add((-9)^k*binomial(2*n+1,2*k)*procname(n-k),k=1..n+1) ; end if;end proc:
    seq(1/(24^n)*add(binomial(n,k)*A002439(k), k = 0..n), n = 0..20); # Peter Bala, Dec 26 2021
  • Mathematica
    nmax=20; rk=Rest[CoefficientList[Series[Sum[Product[1-1/(1+x)^j,{j,1,n}],{n,0,nmax}],{x,0,nmax}],x]]; Flatten[{1,Table[Sum[rk[[k]] * k! * StirlingS2[n,k],{k,1,n}],{n,1,nmax}]}] (* Vaclav Kotesovec, May 03 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( subst( sum( i=0, n, prod( j=1, i, 1 - (1 - x + O(x^(n - i + 2)))^j )), x, 1 - exp( -x + x * O(x^n))), n))} /* Michael Somos, Apr 01 2012 */

Formula

a(n) = (1/(24^n))*Sum_{k=0..n} binomial(n, k)*A002439(k). Zagier 2001, p. 954.
G.f.: Sum(Product(1-exp(-k*x),k = 1 .. n),n = 0 .. infinity). a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A138265(k). - Vladeta Jovovic, Mar 11 2008
From Peter Bala, Mar 19 2009: (Start)
Conjectural form for the o.g.f. as a continued fraction:
1/(1-x/(1-2*x/(1-5*x/(1-7*x/(1-12*x/(1-15*x/(1- ...))))))) = 1 + x + 3*x^2 + 19*x^3 + 207*x^4 + ..., where the sequence [1,2,5,7,12,15,..] is the sequence of generalized pentagonal numbers A001318. Compare with the continued fraction form of the o.g.f. of A002105. (End)
E.g.f.: 1+(exp(x)-1)/(G(0)+1-exp(x)), where G(k)= 2*exp(x*(k+1))-1-exp(x*(k+1))*(exp(x*(k+2))-1)/G(k+1); (continued fraction, Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 06 2012
Asymptotics (Brightwell and Keller, 2011): a(n) ~ 12*sqrt(3)/Pi^(5/2) * (n!)^2 * sqrt(n) * (6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014
From Peter Bala, May 11 2017: (Start)
For a proof of above conjectural continued fraction representation of the o.g.f. see the Bala link.
G.f.: 1/(1 + x - 2*x/(1 - 1*x/(1 + x - 7*x/(1 - 5*x/(1 + x - 15*x/(1 - 12*x/(1 + x - 26*x/(1 - 22*x/(1 + x - ...))))))))), where the sequence of unsigned partial numerators [2, 1, 7, 5, 15, 12, ...] is obtained from A001318 by swapping adjacent terms.
E.g.f.: F(q) = Sum_{n >= 0} q^(n+1)*Product_{i = 1..n} (1 - q^i)^2 at q = exp(t). Note that F(q) at q = 1/(1 - t) is a g.f. for unlabeled interval orders A022493, and at q = 1 - t gives a g.f. for A138265. (End)
From Peter Bala, Dec 26 2021: (Start)
a(6*n + 5) == 0 (mod 7); a(10*n + 7) == 0 (mod 11);
a(12*n + 11) == 0 (mod 13); a(16*n + 5) == a(16*n + 8) == 0 (mod 17);
a(18*n + 3) == 0 (mod 19); a(22*n + 4) == 0 (mod 23). (End)

A264909 Number A(n,k) of k-ascent sequences of length n with no consecutive repeated letters; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 6, 5, 0, 1, 1, 4, 12, 21, 16, 0, 1, 1, 5, 20, 54, 87, 61, 0, 1, 1, 6, 30, 110, 276, 413, 271, 0, 1, 1, 7, 42, 195, 670, 1574, 2213, 1372, 0, 1, 1, 8, 56, 315, 1380, 4470, 9916, 13205, 7795, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,    1,    1,     1,     1,      1,      1, ...
  1,   1,    1,    1,     1,     1,      1,      1, ...
  0,   1,    2,    3,     4,     5,      6,      7, ...
  0,   2,    6,   12,    20,    30,     42,     56, ...
  0,   5,   21,   54,   110,   195,    315,    476, ...
  0,  16,   87,  276,   670,  1380,   2541,   4312, ...
  0,  61,  413, 1574,  4470, 10555,  21931,  41468, ...
  0, 271, 2213, 9916, 32440, 86815, 201761, 422128, ...
		

Crossrefs

Rows k=0+1,2-4 give: A000012, A001477, A002378, A160378(n+1).
Main diagonal gives A264916.

Programs

  • Maple
    b:= proc(n, k, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, k, j, t+`if`(j>i, 1, 0))), j=0..t+k))
        end:
    A:= (n, k)-> b(n-1, k, 0$2):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, k_, i_, t_] := b[n, k, i, t] = If[n<1, 1, Sum[If[j == i, 0, b[n-1, k, j, t + If[j>i, 1, 0]]], {j, 0, t+k}]]; A[n_, k_] := b[n-1, k, 0, 0]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)

A158691 The number of upper-triangular matrices with at least one nonzero entry in each row and whose entries sum to n.

Original entry on oeis.org

1, 1, 3, 12, 61, 380, 2815, 24213, 237348, 2612681, 31915787, 428481472, 6271362282, 99388642292, 1695614865711, 30984649882928, 603790447393402, 12498732438500663, 273902239550757626, 6334968666307580051, 154211723833861061644, 3941258052200287007636
Offset: 0

Views

Author

Peter Bala, Mar 24 2009

Keywords

Comments

There is a connection with the alternating series 1 - (1-x) + (1-x)(1-x^2) - (1-x)(1-x^2)(1-x^3) + .... Namely, if we replace x with 1/(1-x) in the partial sum 1 - (1-x) + (1-x)(1-x^2) - (1-x)(1-x^2)(1-x^3) + ... + (-1)^n(1-x)(1-x^2)...(1-x^n) and then expand about x = 0 we get a series whose first n+1 coefficients agree with the first n+1 terms of the present sequence.
From Vít Jelínek, Sep 04 2014: (Start)
The above remark, first conjectured by Bala, is a consequence of the identities satisfied by the generating function for a(n). More precisely, the generating function F(x)=Sum_{n>=0} a(n)x^n can be expressed by any of these three formulas:
F(x) = Sum_{n>=0} Product_{i=1..n} (1-(1-x)^(2*i-1))
F(x) = Sum_{n>=0} Product_{i=1..n} (1/(1-x)^i - 1)
F(x) = Sum_{n>=0} (1-x)^(n+1) Product_{i=1..n} (1-(1-x)^(2*i))
The first two formulas were conjectured to be equal by Bala. This was confirmed by Andrews and Jelínek, who also derived the third formula.
Bringmann, Li and Rhoades have independently derived the three formulas above, and additionaly, they proved that
F(x) = (1/2)*Sum_{n>=0} Product_{i=1..n} (1/(1+(1-x)^i)).
(End)
From Vít Jelínek, Feb 12 2012: (Start)
a(n) has the following combinatorial interpretations:
(1) the number of upper-triangular nonnegative integer matrices with at least one positive entry in each row, whose entries sum to n. E.g., for n=2 this corresponds to these three matrices (with zeros represented as dots):
(2), (1.) and (.1)
(.1) (.1)
(2) the number of upper-triangular nonnegative matrices that are symmetric along the northeast diagonal, have no positive entry on the northeast diagonal, have at least one positive entry in every row and column, and their entries sum to 2n. These are the three such matrices with n=2:
(2.), (11.) and (1...)
(.2) (..1) (.1..)
(..1) (..1.)
(...1)
(3) the number of upper-triangular nonnegative matrices that are symmetric along the northeast diagonal, have at least one positive entry on the northeast diagonal, have at least one positive entry in every row and column, and their entries on or above the northeast diagonal sum to n. These are the three such matrices with n=2:
(2), (11) and (1..)
(.1) (.1.)
(..1)
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 61*x^4 + 380*x^5 + 2815*x^6 +...
		

Crossrefs

Programs

  • Maple
    g:=sum(product(1-(1-x)^(2*i-1), i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19); # by definition
    g:=sum((-1)^n*product(1-1/(1-x)^i, i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19);
  • Mathematica
    a[ n_] := SeriesCoefficient[ Sum[ Product[ 1 - (1 - x)^(2 i - 1), {i, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, 1/(1-x)^k-1, 1+x*O(x^n))), n)} /* Paul D. Hanna, Jan 29 2012 */
    
  • PARI
    /* G.f. as a Continued Fraction: */
    {a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1/(1 - (1-x)^(n-k+1)*(1-(1-x)^(n-k+2))*CF)); polcoeff(1/(1-x*CF), n, x)} /* Paul D. Hanna, Jan 29 2012 */

Formula

Sum_{n >= 0} Product_{i= 1..n} (1-(1-x)^(2*i-1)) = 1 + x + 3*x^2 + 12*x^3 + 61*x^4 + .... Compare with A022493, A138265 and A158690.
G.f.: Sum_{n>=0} Product_{k=1..n} [1/(1-x)^k - 1].
G.f.: 1/(1 - (1-(1-x))/(1 - (1-x)*(1-(1-x)^2)/(1 - (1-x)^2*(1-(1-x)^3)/(1 - (1-x)^3*(1-(1-x)^4)/(1 - (1-x)^4*(1-(1-x)^5)/(1 -...)))))), a continued fraction. - Paul D. Hanna, Jan 29 2012
By results of Bringmann, Li and Rhoades, a(n) is asymptotically c*n!*(12/Pi^2)^n, with c=6*sqrt(2)*exp(Pi^2/24)/Pi^2, and the ratio a(n)/A179525(n) tends to exp(Pi^2/12). - Vít Jelínek, Sep 04 2014
From Peter Bala, May 16 2017: (Start)
G.f. 1/2*( 1 + Sum_{n >= 0} 1/(1 - x)^((n+1)*(n+2)/2) * Product_{i = 1..n} (1 - (1 - x)^i) ).
Conjectural g.f.: Sum_{n >= 0} 1/(1 - x)^((n+1)*(2*n+1)) * Product_{i = 1..2*n} ((1 - x)^i - 1). (End)

A289314 Number of n X n Fishburn matrices with entries in the set {0,1,2}.

Original entry on oeis.org

1, 2, 12, 264, 19632, 4606752, 3311447232, 7202118117504, 47151987852663552, 927337336972381327872, 54741643544083873448266752, 9696222929066933463021344262144, 5152757080697434799933013959862300672, 8215035458438940398186389046297459974152192
Offset: 0

Views

Author

Peter Bala, Jul 03 2017

Keywords

Comments

A Fishburn matrix is defined to be an upper-triangular matrix with nonnegative integer entries such that each row and column contains a nonzero entry. See A005321 for primitive Fishburn matrices of dimension n, that is, Fishburn matrices of dimension n with entries in the set {0,1}.
The present sequence has an alternative description as the number of primitive Fishburn matrices of dimension n where the 1's may be colored either black or white.

Examples

			a(2) = 12: The twelve 2 X 2 Fishburn matrices with entries 0, 1 or 2 are
/1 0\  /1 0\  /2 0\  /2 0\
\0 1/  \0 2/  \0 1/  \0 2/
/1 1\  /1 2\  /1 1\  /1 2\  /2 1\  /2 2\  /2 1\  /2 2\.
\0 1/  \0 1/  \0 2/  \0 2/  \0 1/  \0 1/  \0 2/  \0 2/
Alternatively, the twelve 2-colored primitive Fishburn matrices of dimension 2 (using +1 and -1 for the two different colored versions of 1) are
/+-1  0\ (4 possibilities)
\0  +-1/
   and
/+-1 +-1\ (8 possibilities).
\ 0  +-1/
		

Crossrefs

Programs

  • Maple
    N:= 20: # to get a(0)..a(N)
    g:= add(x^n*mul((3^i-1)/(1+x*(3^i-1)),i=1..n),n=0..N):
    S:= series(g,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jul 11 2017
  • Mathematica
    QP = QPochhammer; nmax = 14;
    Sum[(-1)^n (1-x)^(-n-1) x^n QP[3, 3, n]/QP[x/(x-1), 3, n+1], {n, 0, nmax}] + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Sep 19 2018 *)

Formula

O.g.f.: A(x) = Sum_{n >=0} x^n Product_{i = 1..n} (3^i - 1)/(1 + x*(3^i - 1)) = 1 + 2*x + 12*x^2 + 264*x^3 + ... (use Jelínek, Theorem 2.1 with v = w = x = y = 2).
Two conjectural continued fractions for the o.g.f.:
A(x) = 1/(1 - 2*x/(1 - 4*x/(1 - 24*x/(1 - 64*x/(1 - 234*x/(1 - 676*x/(1 - ... - 3^(n-1)*(3^n - 1)*x/(1 - (3^n - 1)^2*x/(1 - ...))))))))) and
A(x) = 1 + 2*x/(1 - 6*x/(1 - 16*x/(1 - 72*x/(1 - 208*x/(1 - ... - 3^n*(3^n - 1)*x/(1 - (3^(n+1) - 1)*(3^n - 1)*x/(1 - ...))))))).
a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer(1/3)^2 = 0.313741223174946734265526469975707962872482170305592991802056615373429729... - Vaclav Kotesovec, Aug 31 2023, updated Mar 17 2024

A289315 Number of n X n Fishburn matrices with entries in the set {0,1,2,3}.

Original entry on oeis.org

1, 3, 36, 2052, 505764, 511718148, 2088275673636, 34176650317115652, 2239082850356711468964, 586908388119824949146284548, 615402202729113953115253336166436, 2581165458211746544190089033131172341252, 43304685245392697816407075492352986194550240164
Offset: 0

Views

Author

Peter Bala, Jul 03 2017

Keywords

Comments

A Fishburn matrix is defined to be an upper-triangular matrix with nonnegative integer entries such that each row and column contains a nonzero entry. See A005321 for primitive Fishburn matrices of dimension n, that is, Fishburn matrices of dimension n with entries in the set {0,1}.
The present sequence has an alternative description as the number of primitive Fishburn matrices of dimension n where each entry equal to 1 can have one of three different colors. Cf. A289314.

Examples

			a(2) = 36: The 36 2 X 2 Fishburn matrices with entries 0, 1, 2 or 3 are
/1 0\ /1 0\ /2 0\ /2 0\
\0 1/ \0 2/ \0 1/ \0 2/
/1 0\ /3 0\ /3 0\
\0 3/ \0 1/ \0 3/
/2 0\ /3 0\
\0 3/ \0 2/
/1 2\ /1 1\ /1 2\ /2 1\ /2 2\ /2 1\ /2 2\
\0 1/ \0 2/ \0 2/ \0 1/ \0 1/ \0 2/ \0 2/
/1 1\ /1 3\ /1 1\ /1 3\ /3 1\ /3 3\ /3 1\
\0 1/ \0 1/ \0 3/ \0 3/ \0 1/ \0 1/ \0 3/
/2 3\ /2 2\ /2 3\ /3 2\ /3 3\ /3 2\ /3 3\
\0 2/ \0 3/ \0 3/ \0 2/ \0 2/ \0 3/ \0 3/
/1 2\ /1 3\ /2 3\ /2 1\ /3 1\ /3 2\.
\0 3/ \0 2/ \0 1/ \0 3/ \0 2/ \0 1/
Alternatively, the 36 3-colored primitive Fishburn matrices of dimension 2 (using 1_j, j = 1,2,3 to denote the three different colored versions of 1) are
/1_j  0\ (9 possibilities)
\ 0 1_j/
and
/1_j 1_j\ (27 possibilities).
\ 0  1_j/
		

Crossrefs

Programs

  • Maple
    G:= add(x^n*mul((4^i-1)/(1+x*(4^i-1)), i=1..n),n=0..40):
    S:= series(G,x,41):
    seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
  • Mathematica
    Table[SeriesCoefficient[Sum[x^j*Product[(4^i - 1)/(1 + x (4^i - 1)), {i, j}], {j, 0, n}], {x, 0, n}], {n, 0, 12}] (* Michael De Vlieger, Jul 10 2017, after Maple by Robert Israel *)

Formula

O.g.f.: A(x) = Sum_{n >= 0} x^n Product_{i = 1..n} (4^i - 1)/(1 + x*(4^i - 1)) = 1 + 3*x + 36*x^2 + 2052*x^3 + ... (use Jelínek, Theorem 2.1 with v = w = x = y = 3).
Two conjectural continued fractions for the o.g.f.:
A(x) = 1/(1 - 3*x/(1 - 9*x/(1 - 60*x/(1 - 225*x/(1 - 1008*x/(1 - 3969*x/(1 - ... - 4^(n-1)*(4^n - 1)*x/(1 - (4^n - 1)^2*x/(1 - ...))))))))) and
A(x) = 1 + 3*x/(1 - 12*x/(1 - 45*x/(1 - 240*x/(1 - 945*x/(1 - ... - 4^n*(4^n - 1)*x/(1 - (4^(n+1) - 1)*(4^n - 1)*x/(1 - ...))))))).
a(n) ~ c * 2^(n*(n+1)), where c = QPochhammer(1/4)^2 = 0.474083940023743191581900099468175063640311684514259231... - Vaclav Kotesovec, Aug 31 2023, updated Mar 17 2024

A099960 An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 8, 17, 56, 155, 608, 2073, 9440, 38227, 198272, 929569, 5410688, 28820619, 186043904, 1109652905, 7867739648, 51943281731, 401293838336, 2905151042481, 24290513745920, 191329672483963, 1721379917619200, 14655626154768697, 141174819474169856
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2004

Keywords

Comments

First column (also row sums) of triangle in A099959.
Number of ascent sequences of length n without level steps and with alternating ascents and descents. a(6) = 8: 010101, 010102, 010103, 010201, 010202, 010203, 010212, 010213. - Alois P. Heinz, Oct 27 2017

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.

Crossrefs

Programs

  • Maple
    with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1],n=0..30); # Emeric Deutsch
  • Mathematica
    g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* Jean-François Alcover, May 23 2013 *)
  • Sage
    # Algorithm of L. Seidel (1877)
    def A099960_list(n) :
        D = [0]*(n//2+3); D[1] = 1
        R = []; b = True; h = 1
        for i in (1..n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k+1]
                R.append(D[1]); h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1])
            b = not b
        return R
    A099960_list(27)  # Peter Luschny, Apr 30 2012

Formula

a(n) ~ 2^(5/2) * n^(n+3/2) / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Sep 10 2014

Extensions

More terms from Emeric Deutsch, Nov 16 2004

A137252 Triangle T(n,k) read by rows: number of k X k triangular (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 0, 4, 11, 1, 0, 0, 0, 1, 33, 26, 1, 0, 0, 0, 0, 42, 171, 57, 1, 0, 0, 0, 0, 26, 507, 718, 120, 1, 0, 0, 0, 0, 8, 840, 4017, 2682, 247, 1, 0, 0, 0, 0, 1, 865, 12866, 25531, 9327, 502, 1, 0, 0, 0, 0, 0, 584, 26831, 138080, 141904, 30973, 1013, 1
Offset: 0

Views

Author

Vladeta Jovovic, Mar 11 2008

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 0, 4,  1;
  0, 0, 0, 4, 11,   1;
  0, 0, 0, 1, 33,  26,   1;
  0, 0, 0, 0, 42, 171,  57,   1;
  0, 0, 0, 0, 26, 507, 718, 120,  1;
  ...
		

Crossrefs

Cf. A138265 (row sums), A005321 (column sums), A135589.
T(2n,n) gives A357140.

Formula

G.f.: Sum(Product(1-1/(1+((1+x)^i-1)*y), i=1..n), n=0..infinity).
Showing 1-10 of 18 results. Next