cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A210208 Triangle read by rows in which row n lists the divisors of n that are prime powers, A000961.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 1, 11, 1, 2, 3, 4, 1, 13, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 9, 1, 19, 1, 2, 4, 5, 1, 3, 7, 1, 2, 11, 1, 23, 1, 2, 3, 4, 8, 1, 5, 25, 1, 2, 13, 1, 3, 9, 27, 1, 2, 4, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2012

Keywords

Comments

{T(n,k): k = 1..A073093(n)} subset of {A027750(n,k): k = 1..A000005(n)} for all n.

Examples

			Table begins:
  1;
  1, 2;
  1, 3;
  1, 2, 4;
  1, 5;
  1, 2, 3;
  1, 7;
  1, 2, 4, 8;
  1, 3, 9;
  1, 2, 5;
  1, 11;
  1, 2, 3, 4; - _Geoffrey Critzer_, Feb 08 2015
		

Crossrefs

Cf. A073093 (row lengths), A023888 (row sums), A034699 (row maxima), A183091 (row products).

Programs

  • Haskell
    a210208 n k = a210208_tabf !! (n-1) !! (n-1)
    a210208_row n = a210208_tabf !! (n-1)
    a210208_tabf = map (filter ((== 1) . a010055)) a027750_tabf
    
  • Mathematica
    Table[Prepend[Select[Divisors[n], PrimeNu[#] == 1 &], 1], {n, 1, 10}]//Grid (* Geoffrey Critzer, Feb 08 2015 *)
  • PARI
    row(n) = select(x -> omega(x) < 2, divisors(n)); \\ Amiram Eldar, May 02 2025

Formula

A034699(n) = T(n,A073093(n)) = maximum of n-th row.

A226078 Table read by rows: prime power factors of central binomial coefficients, cf. A000984.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 5, 7, 4, 9, 7, 4, 3, 7, 11, 8, 3, 11, 13, 2, 9, 5, 11, 13, 4, 5, 11, 13, 17, 4, 11, 13, 17, 19, 8, 3, 7, 13, 17, 19, 4, 7, 13, 17, 19, 23, 8, 25, 7, 17, 19, 23, 8, 27, 25, 17, 19, 23, 16, 9, 5, 17, 19, 23, 29, 2, 9, 5, 17, 19, 23, 29, 31
Offset: 0

Views

Author

Reinhard Zumkeller, May 25 2013

Keywords

Examples

			.   n        initial rows               A000984(n)   A226047(n)
.  ---+------------------------------+-------------+------------
.   0   [1]                                      1
.   1   [2]                                      2            2
.   2   [2,3]                                    6            3
.   3   [4,5]                                   20            5
.   4   [2,5,7]                                 70            7
.   5   [4,9,7]                                252            9
.   6   [4,3,7,11]                             924           11
.   7   [8,3,11,13]                           3432           13
.   8   [2,9,5,11,13]                        12870           13
.   9   [4,5,11,13,17]                       48620           17
.  10   [4,11,13,17,19]                     184756           19
.  11   [8,3,7,13,17,19]                    705432           19
.  12   [4,7,13,17,19,23]                  2704156           23
.  13   [8,25,7,17,19,23]                 10400600           25
.  14   [8,27,25,17,19,23]                40116600           27
.  15   [16,9,5,17,19,23,29]             155117520           29
.  16   [2,9,5,17,19,23,29,31]           601080390           31
.  17   [4,27,5,11,19,23,29,31]         2333606220           31
.  18   [4,3,25,7,11,19,23,29,31]       9075135300           31
.  19   [8,3,25,7,11,23,29,31,37]      35345263800           37
.  20   [4,9,5,7,11,13,23,29,31,37]   137846528820           37 .
		

Crossrefs

Cf. A067434 (row lengths), A001316 (left edge), A060308 (right edge), A226047 (row maxima), A226083 (row minima), A000984 (row products).
Cf. A267823.

Programs

  • Haskell
    a226078 n k = a226078_tabf !! n !! k
    a226078_row n = a226078_tabf !! n
    a226078_tabf = map a141809_row a000984_list
    
  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    b:= proc(n) local p;
          p:= add(f(n+i) -f(i), i=1..n);
          seq(`if`(coeff(p, x, i)>0,
                 i^coeff(p, x, i), NULL), i=1..degree(p))
        end:
    T:= n-> `if`(n=0, 1, b(n)):
    seq(T(n), n=0..30);  # Alois P. Heinz, May 25 2013
  • Mathematica
    Table[Power @@@ FactorInteger[(2n)!/n!^2] , {n, 0, 30}] // Flatten (* Jean-François Alcover, Jul 29 2015 *)
  • PARI
    row(n)= if(n<1, [1], [ e[1]^e[2] |e<-Col(factor(binomial(2*n, n)))]); \\ Ruud H.G. van Tol, Nov 18 2024

Formula

T(n,k) = A141809(A000984(n),k) for k = 0..A067434(n)-1.

A085604 T(n,k) = highest power of prime(k) dividing n!, read by rows.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 3, 1, 1, 0, 0, 4, 2, 1, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 7, 2, 1, 1, 0, 0, 0, 0, 7, 4, 1, 1, 0, 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 11, 5, 2, 2, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 07 2003

Keywords

Comments

T(n,1) = A011371(n); T(n,2) = A054861(n) for n>1;
T(n,k) = number of occurrences of prime(k) as factor in numbers <= n (with repetitions);
Sum{T(n,k): 1<=k<=n} = A022559(n);
T(n, A000720(n)) = 1; T(n,k) = 0, A000720(n)
T(n,k) = A115627(n,k) for n > 1 and k=1..A000720(n). - Reinhard Zumkeller, Nov 01 2013

Examples

			0;
1,0;
1,1,0;
3,1,0,0;
3,1,1,0,0;
4,2,1,0,0,0;
4,2,1,1,0,0,0;
7,2,1,1,0,0,0,0;
7,4,1,1,0,0,0,0,0;
8,4,2,1,0,0,0,0,0,0;
		

Crossrefs

Programs

  • Haskell
    a085604 n k = a085604_tabl !! (n-2) !! (k-1)
    a085604_row 1 = [0]
    a085604_row n = a115627_row n ++ (take $ a062298 $ fromIntegral n) [0,0..]
    a085604_tabl = map a085604_row [1..]
    -- Reinhard Zumkeller, Nov 01 2013
  • Mathematica
    T[n_, k_] := Module[{p = Prime[k], jm}, jm = Floor[Log[p, n]]; Sum[Quotient[n, p^j], {j, 1, jm}]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)

A067240 If n = Product_{i} p_i^e_i, a(n) = Sum_{i} (p_i - 1)*p_i^(e_i - 1).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 6, 4, 6, 5, 10, 4, 12, 7, 6, 8, 16, 7, 18, 6, 8, 11, 22, 6, 20, 13, 18, 8, 28, 7, 30, 16, 12, 17, 10, 8, 36, 19, 14, 8, 40, 9, 42, 12, 10, 23, 46, 10, 42, 21, 18, 14, 52, 19, 14, 10, 20, 29, 58, 8, 60, 31, 12, 32, 16, 13, 66, 18, 24, 11, 70, 10, 72, 37, 22, 20, 16, 15, 78, 12, 54, 41, 82, 10, 20, 43, 30, 14, 88, 11, 18, 24, 32, 47, 22, 18, 96, 43, 16, 22
Offset: 1

Author

N. J. A. Sloane, Mar 10 2002

Keywords

Comments

Additive sequence with a(p^e) = phi(p^e) = (p-1)*p^(e-1). - Charles R Greathouse IV, Sep 10 2015

Crossrefs

Programs

  • Haskell
    a067240 1 = 0
    a067240 n = sum $ map a000010 $ a141809_row $ toInteger n
    -- Reinhard Zumkeller, Jun 13 2012
    
  • Maple
    with(numtheory); A067240 := proc(n) local e,j; e := ifactors(n)[2]: add((e[j][1]-1)*e[j][1]^(e[j][2]-1),j=1..nops(e)); end;
  • Mathematica
    a[n_] := Total[ EulerPhi[ Power @@ #] & /@ FactorInteger[n]]; a[1] = 0; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 22 2012, after T. D. Noe *)
  • PARI
    A067240(n)=
    {
        local(f=factor(n), r=0, p, e);
        for (i=1, matsize(f)[1],
            p=f[i,1];  e=f[i,2];
            r += (p-1)*p^(e-1);
        );
        return(r);
    } /* Joerg Arndt, Jun 10 2011 */
    
  • PARI
    a(n)=my(f=factor(n)); sum(i=1,#f~, (f[i,1]-1)*f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Sep 10 2015
    
  • Python
    from sympy import factorint
    a = lambda n: sum((p**(e-1))*(p-1) for p,e in factorint(n).items() if e > 0) # Darío Clavijo, Feb 15 2024

Formula

For n > 1: a(n) = Sum_{i} phi(p_i^e_i). - T. D. Noe, Jul 10 2003

A141810 Irregular table: Row n (of A001221(n) terms, for n>=2) consists of the largest powers that divides n of each distinct prime that divides n. Terms are arranged by the sizes of the prime-powers. Row 1 = (1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 3, 7, 8, 9, 2, 5, 11, 3, 4, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 3, 8, 25, 2, 13, 27, 4, 7, 29, 2, 3, 5, 31, 32, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 5, 8, 41, 2, 3, 7, 43, 4, 11, 5, 9, 2, 23, 47, 3, 16, 49, 2, 25, 3, 17, 4, 13, 53, 2, 27, 5, 11, 7, 8, 3
Offset: 1

Author

Leroy Quet, Jul 07 2008

Keywords

Comments

In other words, except for row 1, row n contains the unitary prime power divisors of n. - Franklin T. Adams-Watters, May 05 2011

Examples

			60 has the prime factorization of 2^2 * 3^1 * 5^1. So row 60 is, arranged by the sizes of the prime-powers, (3,4,5).
		

Crossrefs

A080736 Multiplicative function defined by a(1)=1, a(2)=0, a(2^r) = phi(2^r) (r>1), a(p^r) = phi(p^r) (p odd prime, r>=1), where phi is Euler's function A000010.

Original entry on oeis.org

1, 0, 2, 2, 4, 0, 6, 4, 6, 0, 10, 4, 12, 0, 8, 8, 16, 0, 18, 8, 12, 0, 22, 8, 20, 0, 18, 12, 28, 0, 30, 16, 20, 0, 24, 12, 36, 0, 24, 16, 40, 0, 42, 20, 24, 0, 46, 16, 42, 0, 32, 24, 52, 0, 40, 24, 36, 0, 58, 16, 60, 0, 36, 32, 48, 0, 66, 32, 44, 0, 70, 24, 72, 0, 40, 36, 60, 0, 78, 32
Offset: 1

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Crossrefs

Programs

  • Haskell
    a080736 n = if n `mod` 4 == 2 then 0 else a000010 n
    -- Reinhard Zumkeller, Jun 13 2012, Jun 11 2012
  • Mathematica
    a[n_] := If[Mod[n, 4] == 2, 0, EulerPhi[n]]; Array[a, 100] (* Amiram Eldar, Nov 02 2023 *)
  • PARI
    {for(n=1,81,f=factor(n); print1(if(n==1,1,if(f[1,1]==2&&f[1,2]==1,0,prod(j=1,matsize(f)[1],eulerphi(f[j,1]^f[j,2])))),","))}
    

Formula

a(A016825(n)) = 0; a(A000040(n)) = A000040(n) - 1. - Reinhard Zumkeller, Jun 11 2012
a(n) = if n mod 4 = 2 then 0 else A000010(n). - Reinhard Zumkeller, Jun 13 2012
From Amiram Eldar, Nov 02 2023: (Start)
Multiplicative with a(2) = 0, a(2^e) = 2^(e-1) for e >= 2, and a(p^e) = (p-1)*p^(e-1) for an odd prime p.
Dirichlet g.f.: (1 - 2^(1-s) + 1/(2^s-1)) * zeta(s-1) / zeta(s).
Sum_{k=1..n} a(k) ~ (5/(2*Pi^2)) * n^2. (End)

Extensions

More terms and PARI code from Klaus Brockhaus, Mar 10 2003

A140831 Numbers in whose canonical prime factorization the powers of the primes do not form an increasing sequence.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 60, 63, 80, 84, 90, 96, 112, 120, 126, 132, 135, 144, 156, 160, 168, 175, 176, 180, 189, 192, 204, 208, 224, 228, 240, 252, 264, 270, 275, 276, 280, 288, 297, 300, 312, 315, 320, 325, 336, 348, 350, 351, 352, 360, 372, 378, 384, 405
Offset: 1

Author

Leroy Quet, Jul 18 2008

Keywords

Comments

Previous name was: Let p^b(n,p) be the largest power of the prime p that divides n. The integer n is included if the list of p^b(n,p)'s, where each p is a distinct prime divisor of n, arranged by size of each p^b(n,p) is not in the same order as the list of p^b(n,p)'s arranged by size of each prime p.
This sequence contains no squarefree integers.
90 is the smallest integer in this sequence but not in sequence A126855.
The number of terms < 10^n: 0, 12, 151, 1575, 16154, 161630, 1617052, ..., . - Robert G. Wilson v, Aug 31 2008
If k is in the sequence, then all powers of k are in the sequence. - Mike Jones, Jun 16 2022
If k is in the sequence then k*A020639(k)^m is in the sequence for m >= 0. - David A. Corneth, Jun 16 2022
Conjecture: There are infinitely many terms k such that k+1 is also a term. - Mike Jones, Jun 18 2022

Examples

			The prime factorization of 90 is, when arranged by size of the distinct primes, 2^1 * 3^2 * 5^1. Since 3^2 is > 5^1, even though 5 > 3, 90 is in the sequence.
		

Crossrefs

Complement of A383397.

Programs

  • Mathematica
    fQ[n_] := Block[{f = First@# ^ Last@# & /@ FactorInteger@n}, f != Sort@f]; Select[ Range@ 407, fQ@# &] (* Robert G. Wilson v, Aug 31 2008 *)
  • PARI
    is(n) = { my(f = factor(n)); for(i = 1, #f~-1, if(f[i,1]^f[i,2] > f[i+1,1]^f[i+1,2], return(1) ) ); 0 } \\ David A. Corneth, Jun 16 2022

Extensions

More terms from Robert G. Wilson v, Aug 31 2008
Simpler name from Mike Jones, Jun 15 2022

A333235 a(n) is the product of indices of unitary prime power divisors of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 5, 6, 7, 4, 8, 6, 9, 5, 8, 10, 11, 7, 12, 12, 10, 8, 13, 12, 14, 9, 15, 15, 16, 8, 17, 18, 16, 11, 20, 21, 19, 12, 18, 24, 20, 10, 21, 24, 28, 13, 22, 20, 23, 14, 22, 27, 24, 15, 32, 30, 24, 16, 25, 24, 26, 17, 35, 27, 36, 16, 28, 33, 26, 20
Offset: 1

Author

Ilya Gutkovskiy, Mar 12 2020

Keywords

Comments

Equivalently: replace each prime power p^e in the prime factorization of n by its index in A246655. - M. F. Hasler, Jun 16 2021

Examples

			a(600) = a(2^3 * 3 * 5^2) = a(A246655(6) * A246655(2) * A246655(14)) = 6 * 2 * 14 = 168.
		

Crossrefs

Cf. A322981 (the index of n = p^e in A246655).

Programs

  • Maple
    N:= 1000: # for a(1)..a(N)
    R:= NULL: p:= 2:
    while p < N do
      R:= R,  seq(p^k,k=1..ilog[p](N));
      p:= nextprime(p);
    od:
    L:= sort([R]):
    f:= proc(n) local F, t;
      F:= ifactors(n)[2];
      mul(ListTools:-BinarySearch(L,t[1]^t[2]),t=F)
    end proc:
    map(f, [$1..N]); # Robert Israel, Feb 11 2021
  • Mathematica
    PrimePowerPi[n_] := Sum[Boole[PrimePowerQ[k]], {k, 1, n}]; a[1] = 1; a[n_] := Times @@ (PrimePowerPi[#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 70}]
  • PARI
    apply( {A333235(n)=vecprod([A322981(f[1]^f[2])|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Jun 16 2021

Formula

If n = Product (p_j^k_j) then a(n) = Product (A025528(p_j^k_j)).
a(prime(n)) = A027883(n).
a(2^n) = A182908(n).
a(A246655(n)) = n.

A304233 If n = Product (p_j^k_j) then a(n) = min{p_j^k_j}*max{p_j^k_j}.

Original entry on oeis.org

1, 4, 9, 16, 25, 6, 49, 64, 81, 10, 121, 12, 169, 14, 15, 256, 289, 18, 361, 20, 21, 22, 529, 24, 625, 26, 729, 28, 841, 10, 961, 1024, 33, 34, 35, 36, 1369, 38, 39, 40, 1681, 14, 1849, 44, 45, 46, 2209, 48, 2401, 50, 51, 52, 2809, 54, 55, 56, 57, 58, 3481, 15, 3721, 62, 63, 4096, 65
Offset: 1

Author

Ilya Gutkovskiy, May 08 2018

Keywords

Examples

			a(60) = 15 because 60 = 2^2*3*5, min{2^2,3,5} = 3, max{2^2,3,5} = 5 and 3*5 = 15.
		

Crossrefs

Cf. A000977 (numbers n such that a(n) < n), A002110, A007774 (fixed points), A034684, A034699, A066048, A100484, A141809.

Programs

  • Mathematica
    a[n_] := Min[#[[1]]^#[[2]] & /@FactorInteger[n]] Max[#[[1]]^#[[2]] & /@FactorInteger[n]]; Table[a[n], {n, 65}]

Formula

a(n) = A034684(n)*A034699(n).
a(p^k) = p^(2*k) where p is a prime.
a(A002110(k)) = A100484(k).

A059401 Numbers that contain as proper substrings every maximal prime power dividing them.

Original entry on oeis.org

1197, 2510, 2570, 5210, 5230, 5290, 12590, 14673, 15230, 20530, 21530, 22510, 23510, 23570, 24590, 25030, 25210, 25310, 25390, 25430, 25490, 25510, 25570, 25790, 25910, 25930, 26570, 26590, 27530, 28510, 28570, 29530, 29570, 32510
Offset: 1

Author

Erich Friedman, Jan 29 2001

Keywords

Comments

Most terms end in 0, since 2*5*prime will work if prime contains 2 and 5 as substrings. The other terms are listed in A059402.
There must be at least two maximal prime powers dividing each term. - Harvey P. Dale, Dec 04 2016

Examples

			1197 = 9 * 7 * 19 and all of these are substrings.
		

Crossrefs

Subsequence of A024619.
A059402 is a subsequence.
Equivalent sequence for primes instead of maximal prime powers: A050694.

Programs

  • Haskell
    import Data.List (isInfixOf)
    a059401 n = a059401_list !! (n-1)
    a059401_list = filter (\x -> a010055 x == 0 &&
                   all (`isInfixOf` show x) (map show $ a141809_row x)) [1..]
    -- Reinhard Zumkeller, Dec 16 2013
  • Mathematica
    psmppQ[n_]:=Module[{pp=#[[1]]^#[[2]]&/@FactorInteger[n], idn= IntegerDigits[ n]}, Length[pp]>1&&And@@Table[ SequenceCount[ idn, IntegerDigits[pp[[i]]]]>0,{i,Length[pp]}]]; Select[Range[ 33000], psmppQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 04 2016 *)

Extensions

Offset corrected by Reinhard Zumkeller, Dec 16 2013
Edited by Peter Munn, Sep 01 2022
Previous Showing 11-20 of 21 results. Next