A167884
Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.
Original entry on oeis.org
1, 1, 1, 1, 18, 1, 1, 179, 179, 1, 1, 1636, 6086, 1636, 1, 1, 14757, 144362, 144362, 14757, 1, 1, 132854, 2941135, 7218100, 2941135, 132854, 1, 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1, 1, 10761672, 1001178268, 9211047544, 18315657030, 9211047544, 1001178268, 10761672, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 179, 179, 1;
1, 1636, 6086, 1636, 1;
1, 14757, 144362, 144362, 14757, 1;
1, 132854, 2941135, 7218100, 2941135, 132854, 1;
1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460,
A142461,
A142462,
A167884, ...
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A167884[n_, k_]:= T[n,k,8];
Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A167884(n,k): return T(n,k,8)
flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 18 2022
A225372
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = -2.
Original entry on oeis.org
1, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, -4, 6, -4, 1, 1, -3, 2, 2, -3, 1, 1, -6, 15, -20, 15, -6, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, -2, 1;
1, -1, -1, 1;
1, -4, 6, -4, 1;
1, -3, 2, 2, -3, 1;
1, -6, 15, -20, 15, -6, 1;
1, -5, 9, -5, -5, 9, -5, 1;
1, -8, 28, -56, 70, -56, 28, -8, 1;
1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142560,
A142561,
A142562,
A167884, ...
-
function T(n,k,m)
if k eq 1 or k eq n then return 1;
else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m);
end if; return T;
end function;
A225372:= func< n,k | T(n,k,-2) >;
[A225372(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
-
T:=proc(n,k,l) option remember;
if (n=1 or k=1 or k=n) then 1 else
(l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end;
for n from 1 to 14 do lprint([seq(T(n,k,-2),k=1..n)]); od;
-
T[n_, k_, l_] := T[n, k, l] = If[n == 1 || k == 1 || k == n, 1, (l*n-l*k+1)*T[n-1, k-1, l]+(l*k-l+1)*T[n-1, k, l]]; Table[T[n, k, -2], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 09 2014, translated from Maple *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A225372(n,k): return T(n,k,-2)
flatten([[ A225372(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
A257626
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6.
Original entry on oeis.org
1, 6, 6, 36, 108, 36, 216, 1404, 1404, 216, 1296, 15876, 33696, 15876, 1296, 7776, 166212, 642492, 642492, 166212, 7776, 46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656, 279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936
Offset: 0
Triangle begins as:
1;
6, 6;
36, 108, 36;
216, 1404, 1404, 216;
1296, 15876, 33696, 15876, 1296;
7776, 166212, 642492, 642492, 166212, 7776;
46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656;
279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936;
See similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,3,6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257626
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,3,6) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A142976
a(n) = (1/18)*(9*n^2 + 21*n + 10 - 4^(n+2)*(3*n+5) + 10*7^(n+1)).
Original entry on oeis.org
1, 39, 546, 5482, 47175, 373809, 2824048, 20729340, 149474205, 1065892555, 7547929806, 53215791774, 374165893891, 2626319535477, 18415017346620, 129036833755984, 903819045351033, 6329115592649775, 44313888005135290, 310239730485553170
Offset: 1
-
[5/9 + n^2/2 + 7*n/6 - 4^(n+1) * (2*n/3 + 10/9) + 5*7^(n+1)/9: n in [1..25]]; // Wesley Ivan Hurt, Oct 17 2017
-
A142976:=n->5/9 + n^2/2 + 7*n/6 - 4^(n+1) * (2*n/3 + 10/9) + 5*7^(n+1)/9: seq(A142976(n), n=1..25); # Wesley Ivan Hurt, Oct 17 2017
-
(* First program *)
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1,k-1,m] + (m*k - m+1)*T[n-1,k,m]];
A142976[n_]:= T[n+2,n,3];
Table[A142976[n], {n,30}] (* modified by G. C. Greubel, Mar 16 2022 *)
(* Additional programs *)
CoefficientList[Series[(1 +21*x -36*x^2 -40*x^3)/((1-7*x)*(1-4*x)^2*(1-x)^3), {x, 0, 25}], x] (* Wesley Ivan Hurt, Oct 17 2017 *)
LinearRecurrence[{18,-120,374,-567,408,-112}, {1,39,546,5482,47175,373809}, 40] (* Vincenzo Librandi, Oct 18 2017 *)
-
[(1/18)*(9*n^2 + 21*n + 10 - 4^(n+2)*(3*n+5) + 10*7^(n+1)) for n in (1..30)] # G. C. Greubel, Mar 16 2022
A144414
a(n) = 2*(4^n - 1)/3 - n.
Original entry on oeis.org
1, 8, 39, 166, 677, 2724, 10915, 43682, 174753, 699040, 2796191, 11184798, 44739229, 178956956, 715827867, 2863311514, 11453246105, 45812984472, 183251937943, 733007751830, 2932031007381, 11728124029588, 46912496118419
Offset: 1
-
[(2^(2*n+1) -3*n -2)/3: n in [1..50]]; // G. C. Greubel, Mar 28 2021
-
Table[2(4^n-1)/3 -n,{n,30}] (* or *) LinearRecurrence[{6,-9,4},{1,8,39},30] (* Harvey P. Dale, Mar 17 2015 *)
-
[(2^(2*n+1) -3*n -2)/3 for n in (1..50)] # G. C. Greubel, Mar 28 2021
A166346
Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 8*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 158, 482, 158, 1, 1, 605, 4194, 4194, 605, 1, 1, 2276, 31047, 67752, 31047, 2276, 1, 1, 8515, 210609, 856075, 856075, 210609, 8515, 1, 1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1, 1, 118713
Offset: 1
{1},
{1, 1},
{1, 8, 1},
{1, 39, 39, 1},
{1, 158, 482, 158, 1},
{1, 605, 4194, 4194, 605, 1},
{1, 2276, 31047, 67752, 31047, 2276, 1},
{1, 8515, 210609, 856075, 856075, 210609, 8515, 1},
{1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1},
{1, 118713, 8453460, 93489572, 285010254, 285010254, 93489572, 8453460, 118713, 1},
{1, 443072, 51564829, 876484896, 4159141218, 6855899968, 4159141218, 876484896, 51564829, 443072, 1}
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91.
-
p[x_, 0] := 1/(1 - x);
p[x_, 1] := x/(1 - x)^2;
p[x_, 2] := x*(1 + x)/(1 - x)^3;
p[x_, 3] := x*(x^2 + 8*x + 1)/(1 - x)^4;
p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]
a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];
Flatten[a]
Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];
A257608
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 1.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 219, 219, 1, 1, 2218, 8322, 2218, 1, 1, 22217, 220222, 220222, 22217, 1, 1, 222216, 5006247, 12332432, 5006247, 222216, 1, 1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1, 1, 22222214, 2123693776, 19700767514, 39259903390, 19700767514, 2123693776, 22222214, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 20, 1;
1, 219, 219, 1;
1, 2218, 8322, 2218, 1;
1, 22217, 220222, 220222, 22217, 1;
1, 222216, 5006247, 12332432, 5006247, 222216, 1;
1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,9,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257608
if (k<0 or k>n): return 0
elif (k==0 or k==n): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,9,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A168524
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 39, 39, 1, 1, 120, 350, 120, 1, 1, 341, 2266, 2266, 341, 1, 1, 950, 12895, 28340, 12895, 950, 1, 1, 2659, 69201, 290891, 290891, 69201, 2659, 1, 1, 7540, 360772, 2661644, 4987254, 2661644, 360772, 7540, 1, 1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1
Offset: 0
Triangle of coefficients begins as:
1;
1, 1;
1, 10, 1;
1, 39, 39, 1;
1, 120, 350, 120, 1;
1, 341, 2266, 2266, 341, 1;
1, 950, 12895, 28340, 12895, 950, 1;
1, 2659, 69201, 290891, 290891, 69201, 2659, 1;
1, 7540, 360772, 2661644, 4987254, 2661644, 360772, 7540, 1;
1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1;
-
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
Table[T[n, -2, 2, 1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
-
m=12
def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
flatten([[T(n,k,-2,2,1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
A225398
Triangle read by rows: absolute values of odd-numbered rows of A225433.
Original entry on oeis.org
1, 1, 38, 1, 1, 676, 4806, 676, 1, 1, 10914, 362895, 1346780, 362895, 10914, 1, 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1, 1, 2796190, 1063096365, 35677598760, 267248150610, 554291429748, 267248150610, 35677598760, 1063096365, 2796190, 1
Offset: 1
Triangle begins:
1;
1, 38, 1;
1, 676, 4806, 676, 1;
1, 10914, 362895, 1346780, 362895, 10914, 1;
1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1;
-
(* First program *)
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-(m- 1))*t[n-1,k,m]];
T[n_, k_]:= T[n, k]= t[n+1, k+1, 3]; (* t(n,k,3) = A142458 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n, 1, 14, 2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m +1)*t[n-1,k,m]]; (* t(n,k,3) = A142458 *)
A225398[n_, k_]:= A225398[n, k]= Sum[(-1)^(k-j-1)*t[2*n,j+1,3], {j,0,k-1}];
Table[A225398[n, k], {n,12}, {k,2*n-1}] //Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142458(n, k): return T(n, k, 3)
def A225398(n,k): return sum( (-1)^(k-j-1)*A142458(2*n, j+1) for j in (0..k-1) )
flatten([[A225398(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
A168523
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 98, 290, 98, 1, 1, 289, 1974, 1974, 289, 1, 1, 836, 11719, 25944, 11719, 836, 1, 1, 2419, 64929, 275307, 275307, 64929, 2419, 1, 1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1, 1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 31, 31, 1;
1, 98, 290, 98, 1;
1, 289, 1974, 1974, 289, 1;
1, 836, 11719, 25944, 11719, 836, 1;
1, 2419, 64929, 275307, 275307, 64929, 2419, 1;
1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1;
1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1;
-
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
Table[T[n,-1,1,1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
-
m=12
def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
flatten([[T(n,k,-1,1,1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022