cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A062728 Second 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n+7)/2.

Original entry on oeis.org

0, 8, 25, 51, 86, 130, 183, 245, 316, 396, 485, 583, 690, 806, 931, 1065, 1208, 1360, 1521, 1691, 1870, 2058, 2255, 2461, 2676, 2900, 3133, 3375, 3626, 3886, 4155, 4433, 4720, 5016, 5321, 5635, 5958, 6290, 6631, 6981, 7340, 7708, 8085, 8471, 8866, 9270
Offset: 0

Views

Author

Floor van Lamoen, Jul 21 2001

Keywords

Comments

Old name: Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,8,...
Sequence found by reading the line from 0, in the direction 0, 25, ... and the line from 8, in the direction 8, 51, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 24 2012

Examples

			The spiral begins:
          15
          / \
        16  14
        /     \
      17   3  13
      /   / \   \
    18   4   2  12
    /   /     \   \
  19   5   0---1  11
  /   /             \
20   6---7---8---9--10
		

Crossrefs

Cf. A051682.
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, this sequence, A135705.

Programs

Formula

a(n) = n*(9*n+7)/2.
a(n) = 9*n + a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Bruno Berselli, Jan 13 2011: (Start)
G.f.: x*(8 + x)/(1 - x)^3.
a(n) = Sum_{i=0..n-1} A017257(i) for n > 0. (End)
a(n) = A218470(9n+7). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(16 + 9*x)*exp(x)/2. - G. C. Greubel, May 24 2019

Extensions

New name from Bruno Berselli (with the original formula), Jan 13 2011

A254963 a(n) = n*(11*n + 3)/2.

Original entry on oeis.org

0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205, 11707
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2015

Keywords

Comments

This sequence provides the first differences of A254407 and the partial sums of A017473.
Also:
a(n) - n = A022269(n);
a(n) + n = n*(11*n+5)/2: 0, 8, 27, 57, 98, 150, 213, 287, ...;
a(n) - 2*n = A022268(n);
a(n) + 2*n = n*(11*n+7)/2: 0, 9, 29, 60, 102, 155, 219, 294, ...;
a(n) - 3*n = n*(11*n-3)/2: 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) + 3*n = A211013(n);
a(n) - 4*n = A226492(n);
a(n) + 4*n = A152740(n);
a(n) - 5*n = A180223(n);
a(n) + 5*n = n*(11*n+13)/2: 0, 12, 35, 69, 114, 170, 237, 315, ...;
a(n) - 6*n = A051865(n);
a(n) + 6*n = n*(11*n+15)/2: 0, 13, 37, 72, 118, 175, 243, 322, ...;
a(n) - 7*n = A152740(n-1) with A152740(-1) = 0;
a(n) + 7*n = n*(11*n+17)/2: 0, 14, 39, 75, 122, 180, 249, 329, ...;
a(n) - n*(n-1)/2 = A168668(n);
a(n) + n*(n-1)/2 = A049453(n);
a(n) - n*(n+1)/2 = A202803(n);
a(n) + n*(n+1)/2 = A033580(n).

Crossrefs

Cf. A008729 and A218530 (seventh column); A017473, A254407.
Cf. similar sequences of the type 4*n^2 + k*n*(n+1)/2: A055999 (k=-7, n>6), A028552 (k=-6, n>2), A095794 (k=-5, n>1), A046092 (k=-4, n>0), A000566 (k=-3), A049450 (k=-2), A022264 (k=-1), A016742 (k=0), A022267 (k=1), A202803 (k=2), this sequence (k=3), A033580 (k=4).
Cf. A069125: (2*n+1)^2 + 3*n*(n+1)/2; A147875: n^2 + 3*n*(n+1)/2.

Programs

  • Magma
    [n*(11*n+3)/2: n in [0..50]];
    
  • Mathematica
    Table[n (11 n + 3)/2, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,7,25},50] (* Harvey P. Dale, Mar 25 2018 *)
  • Maxima
    makelist(n*(11*n+3)/2, n, 0, 50);
  • PARI
    vector(50, n, n--; n*(11*n+3)/2)
    
  • Sage
    [n*(11*n+3)/2 for n in (0..50)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^3.
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(14 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A135705 a(n) = 10*binomial(n,2) + 9*n.

Original entry on oeis.org

0, 9, 28, 57, 96, 145, 204, 273, 352, 441, 540, 649, 768, 897, 1036, 1185, 1344, 1513, 1692, 1881, 2080, 2289, 2508, 2737, 2976, 3225, 3484, 3753, 4032, 4321, 4620, 4929, 5248, 5577, 5916, 6265, 6624, 6993, 7372, 7761, 8160, 8569, 8988, 9417, 9856, 10305, 10764
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2008

Keywords

Comments

Also, second 12-gonal (or dodecagonal) numbers. Identity for the numbers b(n)=n*(h*n+h-2)/2 (see Crossrefs): Sum_{i=0..n} (b(n)+i)^2 = (Sum_{i=n+1..2*n} (b(n)+i)^2) + h*(h-4)*A000217(n)^2 for n>0. - Bruno Berselli, Jan 15 2011
Sequence found by reading the line from 0, in the direction 0, 28, ..., and the line from 9, in the direction 9, 57, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 24 2012
Bisection of A195162. - Omar E. Pol, Aug 04 2012

Crossrefs

Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, A062728, this sequence.
Cf. A195162.

Programs

  • GAP
    List([0..50], n-> n*(5*n+4)); # G. C. Greubel, Jul 04 2019
  • Magma
    [n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
    
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0,9,28}, 50] (* or *) Table[5*n^2 + 4*n, {n,0,50}] (* G. C. Greubel, Oct 29 2016 *)
    Table[10 Binomial[n,2]+9n,{n,0,60}] (* Harvey P. Dale, Jun 14 2023 *)
  • PARI
    a(n) = 10*binomial(n,2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: x*(9+x)/(1-x)^3.
a(n) = n*(5*n+4). (End)
a(n) = a(n-1) + 10*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 24 2009
a(n) = Sum_{i=0..n-1} A017377(i) for n>0. - Bruno Berselli, Jan 15 2011
a(n) = A131242(10n+8). - Philippe Deléham, Mar 27 2013
Sum_{n>=1} 1/a(n) = 5/16 + sqrt(1 + 2/sqrt(5))*Pi/8 - 5*log(5)/16 - sqrt(5)*log((1 + sqrt(5))/2)/8 = 0.2155517745488486003038... . - Vaclav Kotesovec, Apr 27 2016
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(9 + 5*x)*exp(x). (End)
a(n) = A003154(n+1) - A000290(n+1). - Leo Tavares, Mar 29 2022

A008732 Molien series for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265
Offset: 0

Views

Author

Keywords

Examples

			From _Philippe Deléham_, Apr 05 2013: (Start)
Stored in five columns:
    1   2   3   4   5
    7   9  11  13  15
   18  21  24  27  30
   34  38  42  46  50
   55  60  65  70  75
   81  87  93  99 105
  112 119 126 133 140
(End)
		

Crossrefs

Cf. A130520.

Programs

  • GAP
    List([0..50], n-> Int((n+3)*(n+4)/10)); # G. C. Greubel, Jul 30 2019
  • Magma
    [Floor((n+3)*(n+4)/10): n in [0..50] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A092202 := proc(n) op(1+(n mod 5),[0,1,0,-1,0]) ; end proc:
    A010891 := proc(n) op(1+(n mod 5),[1,-1,0,0,0]) ; end proc:
    A008732 := proc(n) (n+2)*(n+5)/10+(A010891(n-1)+2*A092202(n-1))/5 ; end proc:
  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 7, 9}, 50] (* Jean-François Alcover, Jan 18 2018 *)
  • PARI
    a(n)=(n+3)*(n+4)\10 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [floor((n+3)*(n+4)/10) for n in (0..50)] # G. C. Greubel, Jul 30 2019
    

Formula

a(n) = floor( (n+3)*(n+4)/10 ) = (n+2)*(n+5)/10 + b(n)/5 where b(n) = A010891(n-2) + 2*A092202(n-1) = 0, 1, 1, 0, -2, ... with period length 5.
G.f.: 1/((1-x)^2*(1-x^5)).
a(n) = a(n-5) + n + 1. - Paul Barry, Jul 14 2004
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+5} floor(j/5).
a(n-5) = (1/2)floor(n/5)*(2*n - 3 - 5*floor(n/5)). (End)
a(n) = A130520(n+5). - Philippe Deléham, Apr 05 2013
a(5n) = A000566(n+1), a(5n+1) = A005476(n+1), a(5n+2) = A005475(n+1), a(5n+3) = A147875(n+2), a(5n+4) = A028895(n+1); these formulas correspond to the 5 columns of the array shown in example. - Philippe Deléham, Apr 05 2013

A211013 Second 13-gonal numbers: a(n) = n*(11*n+9)/2.

Original entry on oeis.org

0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 31... and the line from 10, in the direction 10, 63,..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313.

Crossrefs

Bisection of A195313.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, this sequence, A211014.
Cf. A051865.

Programs

Formula

G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019

A162148 a(n) = n*(n+1)*(5*n+7)/6.

Original entry on oeis.org

0, 4, 17, 44, 90, 160, 259, 392, 564, 780, 1045, 1364, 1742, 2184, 2695, 3280, 3944, 4692, 5529, 6460, 7490, 8624, 9867, 11224, 12700, 14300, 16029, 17892, 19894, 22040, 24335, 26784, 29392, 32164, 35105, 38220, 41514, 44992, 48659, 52520, 56580
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A147875.
Equals the fourth right hand column of A175136 for n>=1. - Johannes W. Meijer, May 06 2011
a(n) is the number of triples (w,x,y) havingt all terms in {0,...,n} and x+y>w. - Clark Kimberling, Jun 14 2012

Crossrefs

Programs

Formula

a(n) = A162147(n) + A000217(n).
From Johannes W. Meijer, May 06 2011: (Start)
G.f.: x*(4+x)/(1-x)^4.
a(n) = 4*binomial(n+2,3) + binomial(n+1,3).
a(n) = A091894(3,0)*binomial(n+2,3) + A091894(3,1)*binomial(n+1,3). (End)
a(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i).
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=0, a(1)=4, a(2)=17, a(3)=44. - Harvey P. Dale, May 20 2014
E.g.f.: x*(24 +27*x +5*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A308640 Number of ways to write n as (2^a*3^b)^2 + c*(2c+1) + d*(3d+1)/2, where a,b,c are nonnegative integers and d is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 1, 2, 4, 1, 4, 3, 3, 4, 1, 7, 2, 2, 7, 2, 5, 2, 4, 5, 1, 8, 5, 2, 3, 4, 6, 2, 3, 4, 2, 3, 7, 6, 5, 4, 7, 6, 1, 7, 5, 4, 6, 4, 4, 1, 6, 9, 2, 5, 3, 3, 5, 6, 7, 4, 7, 5, 4, 6, 6, 6, 4, 4, 5, 3, 9, 7, 4, 8, 2, 8, 5, 4, 10, 3, 9, 6, 5, 6, 4, 11, 7, 5, 8, 4, 7, 7, 8, 8, 2, 14, 6, 3, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 12 2019

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0.
Conjecture 2: Let k be 1 or 2. Then, any positive integer n can be written as (2^a*3^b)^2 + k*c^2 + d*(3d+1)/2, where a,b,c are nonnegative integers and d is an integer.
Conjecture 3: Let k be 1 or -1. Then, any positive integer n can be written as (2^a*3^b)^2 + c*(5c+3k)/2 + d*(3d+1)/2, where a,b,c are nonnegative integers and d is an integer.
We have verified Conjectures 1-3 for all n = 1..10^6.
See also A308641 for similar conjectures.

Examples

			a(230) = 1 with 230 =(2^3*3^0)^2 + 3*(2*3+1) + 10*(3*10+1)/2.
a(2058) = 1 with 2058 = (2^0*3^0)^2 + 25*(2*25+1) + (-23)*(3*(-23)+1)/2.
a(26550) = 1 with 26550 = (2^0*3^3)^2 + 14*(2*14+1) + 130*(3*130+1)/2.
a(39433) = 1 with 39433 = (2*3^3)^2 + 135*(2*135+1) + 17*(3*17+1)/2.
a(505330) = 1 with 505330 = (2*3^2)^2 + 198*(2*198+1) + 533*(3*533+1)/2.
a(537830) = 1 with 537830 = (2^5*3^2)^2 + 402*(2*402+1) + (-296)*(3*(-296)+1)/2.
		

Crossrefs

Programs

  • Mathematica
    PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]];
    tab={};Do[r=0;Do[If[PenQ[n-4^a*9^b-c(2c+1)],r=r+1],{a,0,Log[4,n]},{b,0,Log[9,n/4^a]},{c,0,(Sqrt[8(n-4^a*9^b)+1]-1)/4}];tab=Append[tab,r],{n,1,100}];Print[tab]

A211014 Second 14-gonal numbers: n*(6*n+5).

Original entry on oeis.org

0, 11, 34, 69, 116, 175, 246, 329, 424, 531, 650, 781, 924, 1079, 1246, 1425, 1616, 1819, 2034, 2261, 2500, 2751, 3014, 3289, 3576, 3875, 4186, 4509, 4844, 5191, 5550, 5921, 6304, 6699, 7106, 7525, 7956, 8399, 8854, 9321, 9800, 10291, 10794, 11309, 11836, 12375
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ... and the line from 11 in the direction 11, 69, ..., in the square spiral whose vertices are the generalized 14-gonal numbers A195818.

Crossrefs

Bisection of A195818.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, A211013, this sequence.
Cf. A051866.
Cf. A003154.

Programs

Formula

a(n) = -2*Sum_{k=0..n-1} binomial(6*n+5, 6*k+8)*Bernoulli(6*k+8). - Michel Marcus, Jan 11 2016
From G. C. Greubel, Jul 04 2019: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(11+x)/(1-x)^3.
E.g.f.: x*(11+6*x)*exp(x). (End)
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/10 + 6/25 - 3*log(3)/10 - 2*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/5 + log(2)/5 - 6/25 - sqrt(3)*log(sqrt(3)+2)/5. (End)
a(n) = A003154(n+1) - n - 1. - Leo Tavares, Jan 29 2023

A350189 Triangle T(n,k) read by rows: the number of symmetric binary n X n matrices with k ones and no all-1 2 X 2 submatrix.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 3, 6, 10, 9, 9, 4, 1, 4, 12, 28, 46, 72, 80, 80, 60, 16, 1, 5, 20, 60, 140, 296, 500, 780, 1005, 1085, 992, 560, 170, 1, 6, 30, 110, 330, 876, 1956, 4020, 7140, 11480, 16248, 19608, 20560, 16500, 9720, 3276, 360, 1, 7, 42, 182, 665, 2121, 5852, 14792, 33117, 68355, 126994, 214158
Offset: 0

Views

Author

R. J. Mathar, Mar 09 2022

Keywords

Comments

There are 2^(n^2) binary n X n matrices (entries of {0,1}). There are 2^(n*(n+1)/2) symmetric binary matrices. There are A184948(n,k) symmetric binary n X n matrices with k ones.
This sequence is the triangle T(n,k) of symmetric binary n x n matrices with k ones but no 2 X 2 submatrix with all entries = 1. [So in the display of these matrices there is no rectangle with four 1's at the corners.]
The row lengths minus 1 are 0, 1, 3, 6, 9, 12, 17, 21, 24, 29, ... and indicate the maximum number of 1's than can be packed into a symmetric binary n X n matrix without creating an all-1 quadrangle/submatrix of order 2.

Examples

			The triangle starts
  1;
  1 1;
  1 2 2 2;
  1 3 6 10 9 9 4;
  1 4 12 28 46 72 80 80 60 16;
  1 5 20 60 140 296 500 780 1005 1085 992 560 170;
  ...
To place 4 ones, one can place 2 of them in C(n,2) ways on the diagonal and the other 2 in n*(n-1)/2 ways outside the diagonal, avoiding one matrix that builds an all-1 submatrix, which are C(n,2)*(n*(n-1)/2-1) matrices. One can place all 4 on the diagonal in C(n,4) ways. One can place 2 outside the diagonal (the other 2 mirror symmetrically) in C(n*(n-1)/2,2) ways. Sum of the 3 terms is T(n,4) = C(n,3)*(5*n+3)/2. - _R. J. Mathar_, Mar 10 2022
		

Crossrefs

Cf. A001197 (conjectured row lengths), A352258 (row sums), A352801 (rightmost terms), A350296, A350304, A350237, A352472 (traceless symmetric).

Formula

T(n,0) = 1.
T(n,1) = n.
T(n,2) = A002378(n-1).
T(n,3) = A006331(n-1).
T(n,4) = n*(n-1)*(n-2)*(5*n+3)/12 = A147875(n)*A000217(n-1)/3. - R. J. Mathar, Mar 10 2022
T(n,5) = n*(n-1)*(n-2)*(13*n^2-n-24)/60. T(n,6) = n*(n-1)*(n-2)*(19*n^3-18*n^2-97*n+60)/180. T(n,7) = n*(n-1)*(n-2)*(n-3)*(58*n^3+75*n^2-223*n+180)/1260. - Conjectured by R. J. Mathar, Mar 11 2022; proved by Max Alekseyev, Apr 02 2022
G.f.: F(x,y) = Sum_{n,k} T(n,k)*x^n/n!*y^k = exp( Sum_G x^n(G) * y^u(G) / |Aut(G)| ), where G runs over the connected squarefree graphs with loops, n(G) is the number of nodes in G, u(G) the number of ones in the adjacency matrix of G, and Aut(G) is the automorphism group of G. It follows that F(x,y) = exp(x) * (1 + x*y + x^2*y^2 + (2/3*x^3 + x^2)*y^3 + (5/12*x^4 + 3/2*x^3)*y^4 + (13/60*x^5 + 3/2*x^4 + 3/2*x^3)*y^5 + (19/180*x^6 + 7/6*x^5 + 8/3*x^4 + 2/3*x^3)*y^6 + (29/630*x^7 + 3/4*x^6 + 19/6*x^5 + 10/3*x^4)*y^7 + O(y^8)), implying the above formulas for T(n,k). - Max Alekseyev, Apr 02 2022
Conjecture: the largest k such that T(n,k) is nonzero is k = A072567(n) = A001197(n) - 1. - Max Alekseyev, Apr 03 2022

A224419 Numbers n such that triangular(n) + triangular(2*n) is a square.

Original entry on oeis.org

0, 1, 25, 216, 1849, 36481, 311904, 2666689, 52606009, 449765784, 3845364121, 75857828929, 648561949056, 5545012396225, 109386936710041, 935225880773400, 7995904029992761, 157735886878050625, 1348595071513294176, 11530088066237165569, 227455039491212291641, 1944673157896289428824, 16626378995609962758169, 327990009210441246496129
Offset: 1

Views

Author

Alex Ratushnyak, Apr 18 2013

Keywords

Comments

8 of the first 10 terms are of the form x^y. The two exceptions are a(7) = 311904 = 2^5 * 3^3 * 19^2 and a(10) = 449765784 = 2^3 * 3^5 * 13^2 * 37^2.
The corresponding squares are given by A075873(2*n-1)^2. E.g., triangular(a(10)) + triangular(2*a(10)) = 711142146^2 = A075873(19)^2.
Locations of squares in A147875, equivalent to solving the Diophantine equation n*(5*n+3)=2*s^2. - R. J. Mathar, Apr 19 2013

Crossrefs

Cf. A220186 (numbers n such that triangular(2*n) - triangular(n) is a square).

Programs

  • Mathematica
    LinearRecurrence[{1,0,1442,-1442,0,-1,1},{0,1,25,216,1849,36481,311904},30]  (* Harvey P. Dale, Jan 23 2015 *)
  • Python
    import math
    for i in range(1<<30):
            s = i*(i+1)/2 + i*(2*i+1)
            t = int(math.sqrt(s))
            if s == t*t:  print(i)

Formula

a(n) = (A228209(2*n-1) - 3) / 10. - Max Alekseyev, Sep 04 2013
G.f.: x^2*(x+1)*(x^4 + 23*x^3 + 168*x^2 + 23*x + 1) / (x^6 - 1442*x^3 + 1) / (1-x). - Max Alekseyev, Sep 04 2013

Extensions

Terms a(11) onward from Max Alekseyev, Sep 04 2013
Previous Showing 11-20 of 33 results. Next