A228912
a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 19958400, 618710400, 14270256000, 273158645760, 4595022432000, 70309810771200, 1000944296352000, 13467262000832640, 173201547619900800, 2147373231974006400, 25832386565857872000, 303056981918271947520, 3481253462769108364800
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
Tenth column of results of
A163626.
-
Table[9!*StirlingS2[n+1, 10], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
CoefficientList[Series[362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
-
a(n)=10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1
A228913
a(n) = 11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 239500800, 8821612800, 239740300800, 5368729766400, 105006251750400, 1858166876966400, 30449278610150400, 469614684719980800, 6897777008118796800, 97349279409046828800, 1329165939158093836800, 17651395149921751680000
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..960
- Index entries for linear recurrences with constant coefficients, signature (66, -1925, 32670, -357423, 2637558, -13339535, 45995730, -105258076, 150917976, -120543840, 39916800).
Eleventh column of results of
A163626.
-
Table[10!*StirlingS2[n+1, 11], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
CoefficientList[Series[-3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
LinearRecurrence[{66,-1925,32670,-357423,2637558,-13339535,45995730,-105258076,150917976,-120543840,39916800},{0,0,0,0,0,0,0,0,0,0,3628800},30] (* Harvey P. Dale, Mar 20 2017 *)
-
a(n)=11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1
A051782
Apply the "Stirling-Bernoulli transform" to Catalan numbers.
Original entry on oeis.org
1, 0, 2, -12, 122, -1620, 26882, -536172, 12506762, -334261380, 10075002962, -338180323932, 12512502202202, -505992958647540, 22204726014875042, -1050993549782729292, 53373431773793542442, -2894886293042487680100, 167021024758368026331122
Offset: 0
-
a:= n-> add((-1)^k *k! *Stirling2(n+1, k+1)*binomial(2*k, k)/
(k+1), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 17 2013
-
a[n_] := Sum[(-1)^k k! StirlingS2[n+1, k+1] CatalanNumber[k], {k, 0, n}];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 06 2016 *)
A094485
T(n, k) = Stirling1(n+1, k) - Stirling1(n, k-1), for 1 <= k <= n. Triangle read by rows.
Original entry on oeis.org
-1, 2, -2, -6, 9, -3, 24, -44, 24, -4, -120, 250, -175, 50, -5, 720, -1644, 1350, -510, 90, -6, -5040, 12348, -11368, 5145, -1225, 147, -7, 40320, -104544, 105056, -54152, 15680, -2576, 224, -8, -362880, 986256, -1063116, 605556, -202041, 40824, -4914, 324, -9, 3628800, -10265760, 11727000, -7236800
Offset: 1
Triangle starts:
[n\k 1 2 3 4 5 6 7 8]
[1] -1;
[2] 2, -2;
[3] -6, 9, -3;
[4] 24, -44, 24, -4;
[5] -120, 250, -175, 50, -5;
[6] 720, -1644, 1350, -510, 90, -6;
[7] -5040, 12348, -11368, 5145, -1225, 147, -7;
[8] 40320, -104544, 105056, -54152, 15680, -2576, 224, -8;
-
T := (n, k) -> Stirling1(n+1, k) - Stirling1(n, k-1);
seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, May 26 2020
-
Table[StirlingS1[n+1,k]-StirlingS1[n,k-1],{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 25 2024 *)
A142071
Expansion of the exponential generating function 1 - log(1 - x*(exp(z) - 1)), triangle read by rows, T(n,k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 7, 12, 6, 0, 1, 15, 50, 60, 24, 0, 1, 31, 180, 390, 360, 120, 0, 1, 63, 602, 2100, 3360, 2520, 720, 0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 0, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 0, 1, 511, 18660
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 7, 12, 6;
0, 1, 15, 50, 60, 24;
0, 1, 31, 180, 390, 360, 120;
0, 1, 63, 602, 2100, 3360, 2520, 720;
0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040;
...
-
CL := (f, x) -> PolynomialTools:-CoefficientList(f, x):
A142071row := proc(n) 1 - log(1 - x*(exp(z) - 1)):
series(%, z, 12): CL(n!*coeff(%, z, n), x) end:
for n from 0 by 1 to 7 do A142071row(n) od;
# Alternative:
A142071Row := proc(n) if n=0 then [1] else
CL(convert(series(polylog(-n+1, z/(1+z)), z, n*2), polynom), z) fi end:
seq(A142071Row(n), n=0..6); # Peter Luschny, Sep 06 2018
-
T[n_, k_] := If[k==0, Floor[1/(n + 1)], (k - 1)!*StirlingS2[n, k]]; Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Jan 06 2024 *)
Edited, T(0,0) = 1 prepended and new name by
Peter Luschny, Sep 06 2018
A260196
1, -3, followed by -1's.
Original entry on oeis.org
1, -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 0
-
first(m)=vector(m,i,i--;if(i>1,-1,if(i==0,1,if(i==1,-3)))) \\ Anders Hellström, Aug 28 2015
-
Vec(-(2*x^2-4*x+1)/(x-1) + O(x^100)) \\ Colin Barker, Sep 11 2015
A344920
The Worpitzky transform of the squares.
Original entry on oeis.org
0, -1, 5, -13, 29, -61, 125, -253, 509, -1021, 2045, -4093, 8189, -16381, 32765, -65533, 131069, -262141, 524285, -1048573, 2097149, -4194301, 8388605, -16777213, 33554429, -67108861, 134217725, -268435453, 536870909, -1073741821, 2147483645, -4294967293
Offset: 0
-
gf := (exp(x) - 1)*(exp(x) - 2)*exp(-2*x): ser := series(gf, x, 36):
seq(n!*coeff(ser, x, n), n = 0..31);
-
W[n_, k_] := (-1)^k k! StirlingS2[n + 1, k + 1];
WT[a_, len_] := Table[Sum[W[n, k] a[k], {k, 0, n}], {n, 0, len-1}];
WT[#^2 &, 32] (* The Worpitzky transform applied to the squares. *)
-
# Using the Akiyama-Tanigawa algorithm for powers from A371761.
print([(-1)**n * v for (n, v) in enumerate(ATPowList(2, 32))])
# Peter Luschny, Apr 12 2024
A258369
Stirling-Bernoulli transform of A027656.
Original entry on oeis.org
1, 1, 5, 25, 173, 1441, 14165, 160105, 2044733, 29105521, 456781925, 7834208185, 145760370893, 2923764916801, 62891469229685, 1444055265984265, 35250519098274653, 911569049328779281, 24893164161460525445, 715822742720760256345, 21620050147748210572013
Offset: 0
a(0) = 1*1 = 1.
a(1) = 1*1 = 1.
a(2) = 1*1 + 2*2 = 5.
a(3) = 1*1 + 12*2 = 25.
a(4) = 1*1 + 50*2 + 24*3 = 173.
A318259
Generalized Worpitzky numbers W_{m}(n,k) for m = 2, n >= 0 and 0 <= k <= n, triangle read by rows.
Original entry on oeis.org
1, -1, 1, 5, -11, 6, -61, 211, -240, 90, 1385, -6551, 11466, -8820, 2520, -50521, 303271, -719580, 844830, -491400, 113400, 2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400, -199360981, 1704396331, -6187282920, 12372329970, -14727913200, 10443232800, -4086482400, 681080400
Offset: 0
[0] [ 1]
[1] [ -1, 1]
[2] [ 5, -11, 6]
[3] [ -61, 211, -240, 90]
[4] [ 1385, -6551, 11466, -8820, 2520]
[5] [ -50521, 303271, -719580, 844830, -491400, 113400]
[6] [2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400]
-
Joffe := proc(n, k) option remember; if k > n then 0 elif k = 0 then k^n else
k*(2*k-1)*Joffe(n-1, k-1)+k^2*Joffe(n-1, k) fi end:
T := (n, k) -> add((-1)^(k-j)*binomial(n-j, n-k)*add((-1)^i*Joffe(n,i)*
binomial(n-i, j), i=0..n), j=0..k):
seq(seq(T(n, k), k=0..n), n=0..6);
-
Joffe[0, 0] = 1; Joffe[n_, k_] := Joffe[n, k] = If[k>n, 0, If[k == 0,k^n, k*(2*k-1)*Joffe[n-1, k-1] + k^2*Joffe[n-1, k]]];
T[n_, k_] := Sum[(-1)^(k-j)*Binomial[n-j, n-k]*Sum[(-1)^i*Joffe[n, i]* Binomial[n-i, j], {i, 0, n}], {j, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2019, from Maple *)
-
def EW(m, n):
@cached_function
def S(m, n):
R. = ZZ[]
if n == 0: return R(1)
return R(sum(binomial(m*n, m*k)*S(m, n-k)*x for k in (1..n)))
s = S(m, n).list()
c = lambda k: sum((-1)^(k-j)*binomial(n-j,n-k)*
sum((-1)^i*s[i]*binomial(n-i,j) for i in (0..n)) for j in (0..k))
return [c(k) for k in (0..n)]
def A318259row(n): return EW(2, n)
flatten([A318259row(n) for n in (0..6)])
A318260
Generalized Worpitzky numbers W_{m}(n,k) for m = 3, n >= 0 and 0 <= k <= n, triangle read by rows.
Original entry on oeis.org
1, -1, 1, 19, -39, 20, -1513, 4705, -4872, 1680, 315523, -1314807, 2052644, -1422960, 369600, -136085041, 710968441, -1484552160, 1548707160, -807206400, 168168000, 105261234643, -661231439271, 1729495989332, -2410936679424, 1889230062720, -789044256000, 137225088000
Offset: 0
[0] [ 1]
[1] [ -1, 1]
[2] [ 19, -39, 20]
[3] [ -1513, 4705, -4872, 1680]
[4] [ 315523, -1314807, 2052644, -1422960, 369600]
[5] [-136085041, 710968441, -1484552160, 1548707160, -807206400, 168168000]
Comments