A321279 Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n.
0, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 6, 4, 6, 2, 1, 4, 6, 4, 9, 6, 5, 3, 9, 2, 8, 4, 9, 8, 7, 4, 8, 4, 12, 6, 12, 5, 16, 8, 17, 5, 7, 2, 19, 6, 10, 10, 1, 6, 13, 2, 16, 7, 16, 6, 27, 4, 7, 16, 20, 8, 15, 4, 22
Offset: 1
Keywords
Examples
The sequence of antichains begins: 2: {{1}} 3: {{1,1}} 3: {{1},{1}} 4: {{1,2}} 5: {{1,1,1}} 5: {{1},{1},{1}} 6: {{1,1,2}} 7: {{1,1,1,1}} 7: {{1,1},{1,1}} 7: {{1},{1},{1},{1}} 8: {{1,2,3}} 9: {{1,1,2,2}} 10: {{1,1,1,2}} 10: {{1,1},{1,2}} 11: {{1,1,1,1,1}} 11: {{1},{1},{1},{1},{1}} 12: {{1,1,2,3}} 12: {{1,2},{1,3}} 13: {{1,1,1,1,1,1}} 13: {{1,1,1},{1,1,1}} 13: {{1,1},{1,1},{1,1}} 13: {{1},{1},{1},{1},{1},{1}} 14: {{1,1,1,1,2}} 14: {{1,2},{1,1,1}} 15: {{1,1,1,2,2}} 15: {{1,1},{1,2,2}} 16: {{1,2,3,4}}
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
Comments