cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 75 results. Next

A054318 a(n)-th star number (A003154) is a square.

Original entry on oeis.org

1, 5, 45, 441, 4361, 43165, 427285, 4229681, 41869521, 414465525, 4102785725, 40613391721, 402031131481, 3979697923085, 39394948099365, 389969783070561, 3860302882606241, 38213059042991845, 378270287547312205
Offset: 1

Views

Author

Keywords

Comments

A two-way infinite sequence which is palindromic.
Also indices of centered hexagonal numbers (A003215) which are also centered square numbers (A001844). - Colin Barker, Jan 02 2015
Also positive integers y in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0. - Colin Barker, Jan 02 2015

Examples

			a(2) = 5 because the 5th Star number (A003154) 121=11^2 is the 2nd that is a square.
		

Crossrefs

A031138 is 3*a(n)-2. Cf. A003154, A006061, A182432, A211955.
Quintisection of column k=2 of A233427.

Programs

  • GAP
    a:=[1,5,45];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[x(1-6x+x^2)/((1-x)(1-10x+x^2)), {x,0,30}], x] (* Michael De Vlieger, Aug 11 2016 *)
    LinearRecurrence[{11,-11,1},{1,5,45},30] (* Harvey P. Dale, Nov 05 2016 *)
  • PARI
    a(n)=if(n<1,a(1-n),1/2+subst(poltchebi(n)+poltchebi(n-1),x,5)/12)
    
  • PARI
    Vec(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) + O(x^30)) \\ Colin Barker, Jan 02 2015
    
  • Sage
    (x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 1/2 + (3 - sqrt(6))/12*(5 + 2*sqrt(6))^n + (3 + sqrt(6))/12*(5 - 2*sqrt(6))^n.
From Michael Somos, Mar 18 2003: (Start)
G.f.: x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)).
12*a(n)*a(n-1) + 4 = (a(n) + a(n-1) + 2)^2.
a(n) = a(1-n) = 10*a(n-1) - a(n-2) - 4.
a(n) = 12*a(n-1)^2/(a(n-1) + a(n-2)) - a(n-1).
a(n) = (a(n-1) + 4)*a(n-1)/a(n-2). (End)
From Peter Bala, May 01 2012: (Start)
a(n+1) = 1 + (1/2)*Sum_{k = 1..n} 8^k*binomial(n+k,2*k).
a(n+1) = R(n,4), where R(n,x) is the n-th row polynomial of A211955.
a(n+1) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(3) and T(n,x) the Chebyshev polynomial of the first kind.
Sum {k>=0} 1/a(k) = sqrt(3/2). (End)
A003154(a(n)) = A006061(n). - Zak Seidov, Oct 22 2012
a(n) = (4*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016
2*a(n) = 1+A072256(n). - R. J. Mathar, Feb 07 2022

Extensions

More terms from James Sellers, Mar 01 2000

A247125 Number of tilings of a 5 X n rectangle using n pentominoes of shapes L, U, X.

Original entry on oeis.org

1, 0, 2, 1, 16, 10, 59, 60, 330, 397, 1520, 2218, 7875, 12820, 39250, 70045, 202168, 384866, 1038051, 2073580, 5385754, 11156701, 28015232, 59580154, 146333795, 317517636, 766142242, 1686735709, 4019319048, 8946988370, 21116854115, 47386013020, 111065223914
Offset: 0

Views

Author

Alois P. Heinz, Nov 19 2014

Keywords

Examples

			a(4) = 16:
._______.     ._______.     ._______.
| ._____|     | ._____|     | ._| ._|
|_| |_. |     |_| |_. |     | | | | |
|_. ._| |     |_. ._| |     | | | | |
| |_|___|     | |_| | |     |_| |_| |
|_______| (2) |_____|_| (4) |___|___| (4)
._______.     ._______.
| ._____|     | ._____|
|_| ._. |     |_|_. | |
| |_| |_|     | ._| | |
|_____| |     | |___| |
|_______| (2) |___|___| (4) .
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0|0>, <0|0|1|0|0|0>, <0|0|0|1|0|0>,
              <0|0|0|0|1|0>, <0|0|0|0|0|1>, <2|6|12|1|2|0>>^n)[6,6]:
    seq(a(n), n=0..40);

Formula

G.f.: -1/(2*x^6+6*x^5+12*x^4+x^3+2*x^2-1).

A247268 Number of tilings of a 5 X n rectangle using n pentominoes of shapes Y, U, X.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 0, 4, 5, 38, 22, 13, 90, 144, 457, 408, 386, 1267, 2230, 5912, 6481, 7098, 18896, 35433, 79634, 101232, 127501, 288304, 546652, 1113907, 1560356, 2148298, 4408181, 8335234, 15954116, 23827541, 35011426, 67591204, 126376945, 232719926
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2014

Keywords

Examples

			a(3) = 1, a(5) = 2:
._____.     ._________.   ._________.
| ._. |     |_. .___| |   | |___. ._|
|_| |_|     | |_| |_. |   | ._| |_| |
|_. ._|  ,  | |_. ._| |   | |_. ._| |
| |_| |     | ._|_| |_|   |_| |_|_. |
|_____|     |_|_______|   |_______|_|  .
		

Crossrefs

Programs

  • Maple
    gf:= -(x^40 +12*x^39 +36*x^38 -5*x^36 -2*x^35 +12*x^34 +54*x^33 +4*x^32 -21*x^31 -23*x^30 +4*x^29 +20*x^28 +4*x^27 -4*x^25 -7*x^24 -6*x^23 -3*x^22 +33*x^21 -7*x^20 -10*x^19 -12*x^18 -9*x^17 +12*x^16 +16*x^15 +3*x^14 -2*x^13 -2*x^12 -2*x^11 -3*x^10 +5*x^9 -2*x^6 -7*x^5 -x^4 +1) /
    (x^43 +12*x^42 +36*x^41 -3*x^40 -29*x^39 -58*x^38 +12*x^37 +67*x^36 +4*x^35 -123*x^34 -99*x^33 +8*x^32 +23*x^31 -145*x^30 -52*x^29 -52*x^28 -35*x^27 -112*x^26 -99*x^25 -28*x^24 -7*x^23 -15*x^22 -99*x^21 -42*x^20 +22*x^19 +36*x^18 +26*x^17 -4*x^16 +6*x^15 +31*x^14 +5*x^13 +11*x^12 +14*x^11 +23*x^10 -5*x^9 -7*x^8 -x^7 +2*x^6 +9*x^5 +x^4 +x^3 -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..60);

Formula

G.f.: see Maple program.

A247706 Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape P; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 0, 3, 0, 2, 16, 20, 20, 0, 135, 204, 140, 16, 6, 944, 1432, 1164, 296, 170, 0, 4814, 8796, 8452, 4068, 1708, 92, 20, 26435, 58656, 66994, 41648, 17494, 2700, 762, 0, 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62, 978044, 2783560, 3836254, 3107308, 1696312, 609772, 172724, 18220, 3160, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2014

Keywords

Comments

Sum_{k>0} k * T(n,k) = A247739(n).

Examples

			T(2,2) = 2:
.___.   .___.
|   |   |   |
| ._|   |_. |
|_| |   | |_|
|   |   |   |
|___|   |___| .
Triangle T(n,k) begins:
00 :      1;
01 :      1,      0;
02 :      3,      0,      2;
03 :     16,     20,     20,      0;
04 :    135,    204,    140,     16,      6;
05 :    944,   1432,   1164,    296,    170,     0;
06 :   4814,   8796,   8452,   4068,   1708,    92,    20;
07 :  26435,  58656,  66994,  41648,  17494,  2700,   762,   0;
08 : 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62;
		

Crossrefs

Row sums give A174249 or A233427(n,5).
Column k=0 gives A247770.
Even bisection of main diagonal gives A247076.
Cf. A247739.

A247711 Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape X; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 5, 55, 1, 493, 8, 3930, 76, 27207, 734, 9, 207118, 7414, 157, 1622723, 71986, 2064, 8, 12544364, 638499, 22232, 259, 95912510, 5558790, 222964, 3898, 50, 732066083, 47971603, 2179607, 49537, 948, 8, 5616480627, 410502410, 20604626, 564498, 13889, 180
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2014

Keywords

Comments

Sum_{k>0} k * T(n,k) = A247744(n).

Examples

			T(3,1) = 1:
._____.
| ._. |
|_| |_|
|_. ._|
| |_| |
|_____|
.
Triangle T(n,k) begins:
00 :        1;
01 :        1;
02 :        5;
03 :       55,       1;
04 :      493,       8;
05 :     3930,      76;
06 :    27207,     734,      9;
07 :   207118,    7414,    157;
08 :  1622723,   71986,   2064,    8;
09 : 12544364,  638499,  22232,  259;
10 : 95912510, 5558790, 222964, 3898, 50;
		

Crossrefs

Row sums give A174249 or A233427(n,5).
Columns k=0-1 give: A247775, A247828.
Cf. A247744.

A264812 Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, I, X.

Original entry on oeis.org

1, 1, 3, 5, 13, 52, 123, 366, 909, 2444, 7108, 19157, 53957, 146826, 400704, 1115852, 3059907, 8475420, 23369304, 64225984, 177572352, 488839323, 1349102071, 3722419367, 10255126169, 28303059509, 78013005366, 215160477217, 593488173404, 1636220978049
Offset: 0

Views

Author

Alois P. Heinz, Nov 25 2015

Keywords

Examples

			a(4) = 13:
._______.      ._______.      ._______.      ._______.
| | | | |      |   |   |      |   | | |      |   ._| |
| | | | |      | ._| ._|      | ._| | |      |___|   |
| | | | |      |_| |_| |      |_| | | |      |   |___|
| | | | | (1)  |   |   | (4)  |   | | | (6)  | ._|   | (2)
|_|_|_|_|      |___|___|      |_ _|_|_|      |_|_____|    .
a(5) = 52:
._________.
|   |_.   |
| ._| |___|
|_|_   _| |
|   |_|   | (2)  ...
|_____|___|          .
		

Crossrefs

A278330 Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, U, X.

Original entry on oeis.org

1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984, 7019, 11148, 35686, 62181, 182776, 339350, 942507, 1841208, 4887096, 9921685, 25442304, 53190380, 132928715, 284198328, 696276202, 1514363221, 3654567764, 8053235650, 19212546163, 42762014028, 101125071372
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2016

Keywords

Examples

			a(2) = 2,          a(3) = 1:
.___.   .___.      ._____.
|   |   |   |      | ._. |
| ._|   |_. |      |_| |_|
|_| |   | |_|      |_   _|
|   |   |   |      | |_| |
|___|   |___|      |_____| .
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(12, (i, j)-> `if`(i+1=j, 1, `if`(i=12,
        [-8, -16, 0, -6, -4, -8, 21, 4, 8, 2, 2, 0][j], 0)))^n.
        <<1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984>>)[1, 1]:
    seq(a(n), n=0..35);

Formula

G.f.: -(4*x^6+x^3-1) / (8*x^12 +16*x^11 +6*x^9 +4*x^8 +8*x^7 -21*x^6 -4*x^5 -8*x^4 -2*x^3 -2*x^2+1).
a(n) mod 2 = A079978(n).

A278456 Number of tilings of a 5 X n rectangle using pentominoes of any shape and monominoes.

Original entry on oeis.org

1, 2, 50, 1954, 56864, 1532496, 42238426, 1178422563, 32890293494, 917103556607, 25552076570350, 711923354658732, 19838824712825618, 552851181380560869, 15406086995815163663, 429312063890812931103, 11963383230714027535776, 333377000620725693771782
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2016

Keywords

Examples

			a(1) = 2:
._.   ._.
|_|   | |
|_|   | |
|_|   | |
|_|   | |
|_|   |_|  .
		

Crossrefs

Column k=5 of A278657.

A077909 Expansion of 1/((1-x)*(1+x+x^2+2*x^3)).

Original entry on oeis.org

1, 0, 0, -1, 2, 0, 1, -4, 4, -1, 6, -12, 9, -8, 24, -33, 26, -40, 81, -92, 92, -161, 254, -276, 345, -576, 784, -897, 1266, -1936, 2465, -3060, 4468, -6337, 7990, -10588, 15273, -20664, 26568, -36449, 51210, -67896, 89585, -124108, 170316, -225377, 303278, -418532, 566009, -754032, 1025088
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

The absolute value of a(n) is the number of tilings of a 5 X n rectangle using n pentominoes of shapes N, U, X. |a(3)| = 1, |a(4)| = 2:
.___. ._____. ._____.
| .. | | .. | | | | ._. |
|| || || || | | || ||
|. .| , | .| .| |. |. |
| || | | | || | | |_| | |
|___| ||____| |___|_|. - Alois P. Heinz, Jan 03 2014

Crossrefs

Partial sums of A077976.

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|-1|0|0>>^n.
            <<1, 0, 0, -1>>)[1, 1]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 20 2013
  • Mathematica
    CoefficientList[1/(1+x^3-2*x^4) + O[x]^60, x] (* Jean-François Alcover, Jun 08 2015, after Arkadiusz Wesolowski *)
  • PARI
    Vec( 1/((1-x)*(1+x+x^2+2*x^3)) +O(x^66)) \\ Joerg Arndt, Aug 28 2013

Formula

a(n) = (-1)^n*sum(A128099(n-2*k, n-3*k), k=0..floor(n/3)). - Johannes W. Meijer, Aug 28 2013
G.f.: 1/(1 + x^3 - 2*x^4). - Arkadiusz Wesolowski, Nov 20 2013

A247124 Number of tilings of a 5 X n rectangle using n pentominoes of shapes I, U, X.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 14, 21, 37, 63, 122, 221, 374, 656, 1147, 2066, 3699, 6477, 11407, 20099, 35656, 63323, 111775, 197352, 348556, 616560, 1091570, 1929721, 3410509, 6028021, 10658114, 18851012, 33331681, 58927069, 104177155, 184188343, 325686763, 575858676
Offset: 0

Views

Author

Alois P. Heinz, Nov 19 2014

Keywords

Examples

			a(4) = 3:
._______.   ._______.   ._______.
| | | | |   | | ._. |   | ._. | |
| | | | |   | |_| |_|   |_| |_| |
| | | | |   | |_. ._|   |_. ._| |
| | | | |   | | |_| |   | |_| | |
|_|_|_|_|   |_|_____|   |_____|_|  .
		

Crossrefs

Programs

  • Maple
    gf:= -(x-1)^2 *(x^4+x^3+x^2+x+1)^2 /
         (x^15 +x^13 +x^11 -3*x^10 -2*x^8 -2*x^6 +6*x^5 +x^3 +x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..50);

Formula

G.f.: see Maple program.
Previous Showing 11-20 of 75 results. Next