A054318
a(n)-th star number (A003154) is a square.
Original entry on oeis.org
1, 5, 45, 441, 4361, 43165, 427285, 4229681, 41869521, 414465525, 4102785725, 40613391721, 402031131481, 3979697923085, 39394948099365, 389969783070561, 3860302882606241, 38213059042991845, 378270287547312205
Offset: 1
a(2) = 5 because the 5th Star number (A003154) 121=11^2 is the 2nd that is a square.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
Quintisection of column k=2 of
A233427.
-
a:=[1,5,45];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) )); // G. C. Greubel, Jul 23 2019
-
CoefficientList[Series[x(1-6x+x^2)/((1-x)(1-10x+x^2)), {x,0,30}], x] (* Michael De Vlieger, Aug 11 2016 *)
LinearRecurrence[{11,-11,1},{1,5,45},30] (* Harvey P. Dale, Nov 05 2016 *)
-
a(n)=if(n<1,a(1-n),1/2+subst(poltchebi(n)+poltchebi(n-1),x,5)/12)
-
Vec(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) + O(x^30)) \\ Colin Barker, Jan 02 2015
-
(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
A247125
Number of tilings of a 5 X n rectangle using n pentominoes of shapes L, U, X.
Original entry on oeis.org
1, 0, 2, 1, 16, 10, 59, 60, 330, 397, 1520, 2218, 7875, 12820, 39250, 70045, 202168, 384866, 1038051, 2073580, 5385754, 11156701, 28015232, 59580154, 146333795, 317517636, 766142242, 1686735709, 4019319048, 8946988370, 21116854115, 47386013020, 111065223914
Offset: 0
a(4) = 16:
._______. ._______. ._______.
| ._____| | ._____| | ._| ._|
|_| |_. | |_| |_. | | | | | |
|_. ._| | |_. ._| | | | | | |
| |_|___| | |_| | | |_| |_| |
|_______| (2) |_____|_| (4) |___|___| (4)
._______. ._______.
| ._____| | ._____|
|_| ._. | |_|_. | |
| |_| |_| | ._| | |
|_____| | | |___| |
|_______| (2) |___|___| (4) .
-
a:= n-> (<<0|1|0|0|0|0>, <0|0|1|0|0|0>, <0|0|0|1|0|0>,
<0|0|0|0|1|0>, <0|0|0|0|0|1>, <2|6|12|1|2|0>>^n)[6,6]:
seq(a(n), n=0..40);
A247268
Number of tilings of a 5 X n rectangle using n pentominoes of shapes Y, U, X.
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 1, 0, 4, 5, 38, 22, 13, 90, 144, 457, 408, 386, 1267, 2230, 5912, 6481, 7098, 18896, 35433, 79634, 101232, 127501, 288304, 546652, 1113907, 1560356, 2148298, 4408181, 8335234, 15954116, 23827541, 35011426, 67591204, 126376945, 232719926
Offset: 0
a(3) = 1, a(5) = 2:
._____. ._________. ._________.
| ._. | |_. .___| | | |___. ._|
|_| |_| | |_| |_. | | ._| |_| |
|_. ._| , | |_. ._| | | |_. ._| |
| |_| | | ._|_| |_| |_| |_|_. |
|_____| |_|_______| |_______|_| .
-
gf:= -(x^40 +12*x^39 +36*x^38 -5*x^36 -2*x^35 +12*x^34 +54*x^33 +4*x^32 -21*x^31 -23*x^30 +4*x^29 +20*x^28 +4*x^27 -4*x^25 -7*x^24 -6*x^23 -3*x^22 +33*x^21 -7*x^20 -10*x^19 -12*x^18 -9*x^17 +12*x^16 +16*x^15 +3*x^14 -2*x^13 -2*x^12 -2*x^11 -3*x^10 +5*x^9 -2*x^6 -7*x^5 -x^4 +1) /
(x^43 +12*x^42 +36*x^41 -3*x^40 -29*x^39 -58*x^38 +12*x^37 +67*x^36 +4*x^35 -123*x^34 -99*x^33 +8*x^32 +23*x^31 -145*x^30 -52*x^29 -52*x^28 -35*x^27 -112*x^26 -99*x^25 -28*x^24 -7*x^23 -15*x^22 -99*x^21 -42*x^20 +22*x^19 +36*x^18 +26*x^17 -4*x^16 +6*x^15 +31*x^14 +5*x^13 +11*x^12 +14*x^11 +23*x^10 -5*x^9 -7*x^8 -x^7 +2*x^6 +9*x^5 +x^4 +x^3 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..60);
A247706
Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape P; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 0, 3, 0, 2, 16, 20, 20, 0, 135, 204, 140, 16, 6, 944, 1432, 1164, 296, 170, 0, 4814, 8796, 8452, 4068, 1708, 92, 20, 26435, 58656, 66994, 41648, 17494, 2700, 762, 0, 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62, 978044, 2783560, 3836254, 3107308, 1696312, 609772, 172724, 18220, 3160, 0
Offset: 0
T(2,2) = 2:
.___. .___.
| | | |
| ._| |_. |
|_| | | |_|
| | | |
|___| |___| .
Triangle T(n,k) begins:
00 : 1;
01 : 1, 0;
02 : 3, 0, 2;
03 : 16, 20, 20, 0;
04 : 135, 204, 140, 16, 6;
05 : 944, 1432, 1164, 296, 170, 0;
06 : 4814, 8796, 8452, 4068, 1708, 92, 20;
07 : 26435, 58656, 66994, 41648, 17494, 2700, 762, 0;
08 : 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62;
Even bisection of main diagonal gives
A247076.
A247711
Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape X; triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 1, 5, 55, 1, 493, 8, 3930, 76, 27207, 734, 9, 207118, 7414, 157, 1622723, 71986, 2064, 8, 12544364, 638499, 22232, 259, 95912510, 5558790, 222964, 3898, 50, 732066083, 47971603, 2179607, 49537, 948, 8, 5616480627, 410502410, 20604626, 564498, 13889, 180
Offset: 0
T(3,1) = 1:
._____.
| ._. |
|_| |_|
|_. ._|
| |_| |
|_____|
.
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 5;
03 : 55, 1;
04 : 493, 8;
05 : 3930, 76;
06 : 27207, 734, 9;
07 : 207118, 7414, 157;
08 : 1622723, 71986, 2064, 8;
09 : 12544364, 638499, 22232, 259;
10 : 95912510, 5558790, 222964, 3898, 50;
A264812
Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, I, X.
Original entry on oeis.org
1, 1, 3, 5, 13, 52, 123, 366, 909, 2444, 7108, 19157, 53957, 146826, 400704, 1115852, 3059907, 8475420, 23369304, 64225984, 177572352, 488839323, 1349102071, 3722419367, 10255126169, 28303059509, 78013005366, 215160477217, 593488173404, 1636220978049
Offset: 0
a(4) = 13:
._______. ._______. ._______. ._______.
| | | | | | | | | | | | | ._| |
| | | | | | ._| ._| | ._| | | |___| |
| | | | | |_| |_| | |_| | | | | |___|
| | | | | (1) | | | (4) | | | | (6) | ._| | (2)
|_|_|_|_| |___|___| |_ _|_|_| |_|_____| .
a(5) = 52:
._________.
| |_. |
| ._| |___|
|_|_ _| |
| |_| | (2) ...
|_____|___| .
A278330
Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, U, X.
Original entry on oeis.org
1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984, 7019, 11148, 35686, 62181, 182776, 339350, 942507, 1841208, 4887096, 9921685, 25442304, 53190380, 132928715, 284198328, 696276202, 1514363221, 3654567764, 8053235650, 19212546163, 42762014028, 101125071372
Offset: 0
a(2) = 2, a(3) = 1:
.___. .___. ._____.
| | | | | ._. |
| ._| |_. | |_| |_|
|_| | | |_| |_ _|
| | | | | |_| |
|___| |___| |_____| .
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0,2,2,8,4,21,-8,-4,-6,0,-16,-8).
Cf.
A079978,
A174249,
A233427,
A234312,
A234931,
A247124,
A247268,
A247443,
A249762,
A264765,
A264812.
-
a:= n-> (Matrix(12, (i, j)-> `if`(i+1=j, 1, `if`(i=12,
[-8, -16, 0, -6, -4, -8, 21, 4, 8, 2, 2, 0][j], 0)))^n.
<<1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984>>)[1, 1]:
seq(a(n), n=0..35);
A278456
Number of tilings of a 5 X n rectangle using pentominoes of any shape and monominoes.
Original entry on oeis.org
1, 2, 50, 1954, 56864, 1532496, 42238426, 1178422563, 32890293494, 917103556607, 25552076570350, 711923354658732, 19838824712825618, 552851181380560869, 15406086995815163663, 429312063890812931103, 11963383230714027535776, 333377000620725693771782
Offset: 0
a(1) = 2:
._. ._.
|_| | |
|_| | |
|_| | |
|_| | |
|_| |_| .
A077909
Expansion of 1/((1-x)*(1+x+x^2+2*x^3)).
Original entry on oeis.org
1, 0, 0, -1, 2, 0, 1, -4, 4, -1, 6, -12, 9, -8, 24, -33, 26, -40, 81, -92, 92, -161, 254, -276, 345, -576, 784, -897, 1266, -1936, 2465, -3060, 4468, -6337, 7990, -10588, 15273, -20664, 26568, -36449, 51210, -67896, 89585, -124108, 170316, -225377, 303278, -418532, 566009, -754032, 1025088
Offset: 0
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|-1|0|0>>^n.
<<1, 0, 0, -1>>)[1, 1]:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 20 2013
-
CoefficientList[1/(1+x^3-2*x^4) + O[x]^60, x] (* Jean-François Alcover, Jun 08 2015, after Arkadiusz Wesolowski *)
-
Vec( 1/((1-x)*(1+x+x^2+2*x^3)) +O(x^66)) \\ Joerg Arndt, Aug 28 2013
A247124
Number of tilings of a 5 X n rectangle using n pentominoes of shapes I, U, X.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 14, 21, 37, 63, 122, 221, 374, 656, 1147, 2066, 3699, 6477, 11407, 20099, 35656, 63323, 111775, 197352, 348556, 616560, 1091570, 1929721, 3410509, 6028021, 10658114, 18851012, 33331681, 58927069, 104177155, 184188343, 325686763, 575858676
Offset: 0
a(4) = 3:
._______. ._______. ._______.
| | | | | | | ._. | | ._. | |
| | | | | | |_| |_| |_| |_| |
| | | | | | |_. ._| |_. ._| |
| | | | | | | |_| | | |_| | |
|_|_|_|_| |_|_____| |_____|_| .
-
gf:= -(x-1)^2 *(x^4+x^3+x^2+x+1)^2 /
(x^15 +x^13 +x^11 -3*x^10 -2*x^8 -2*x^6 +6*x^5 +x^3 +x-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..50);
Comments