A347449
Number of integer partitions of n with reverse-alternating product > 1.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 5, 10, 11, 20, 22, 37, 41, 66, 75, 113, 129, 190, 218, 310, 358, 497, 576, 782, 908, 1212, 1411, 1851, 2156, 2793, 3255, 4163, 4853, 6142, 7159, 8972, 10451, 12989, 15123, 18646, 21689, 26561, 30867, 37556, 43599, 52743, 61161, 73593
Offset: 0
The a(2) = 1 through a(9) = 11 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(211) (311) (222) (322) (332) (333)
(321) (421) (422) (432)
(411) (511) (431) (522)
(21111) (31111) (521) (531)
(611) (621)
(22211) (711)
(32111) (32211)
(41111) (42111)
(2111111) (51111)
(3111111)
The strict case is
A067659, except that a(0) = a(1) = 0.
The case of >= 1 instead of > 1 is
A344607.
The opposite version is
A344608, also the non-reverse even-length case.
Allowing any integer reverse-alternating product gives
A347445.
Allowing any integer alternating product gives
A347446.
Reverse version of
A347448; also the odd-length case.
The Heinz numbers of these partitions are the complement of
A347450.
The multiplicative version (factorizations) is
A347705.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A100824 counts partitions of n with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A347462 counts possible reverse-alternating products of partitions.
Cf.
A000070,
A008549,
A086543,
A182616,
A236913,
A325534,
A325535,
A344611,
A347442,
A347444,
A347447,
A347453,
A347461,
A347465.
-
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]
A352129
Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 5, 5, 6, 6, 9, 8, 10, 12, 13, 15, 17, 20, 20, 26, 26, 32, 35, 39, 44, 50, 55, 61, 71, 76, 87, 96, 108, 117, 135, 145, 164, 181, 200, 222, 246, 272, 298, 334, 363, 404, 443
Offset: 0
The a(n) strict partitions for selected n:
n = 3 13 15 18 20 22
------------------------------------------------------------------
(2,1) (6,5,2) (10,5) (12,6) (12,7,1) (12,8,2)
(6,4,2,1) (6,4,3,2) (8,7,3) (8,5,4,3) (8,6,5,3)
(6,5,3,1) (8,5,3,2) (8,6,4,2) (8,7,5,2)
(8,6,3,1) (8,7,4,1) (12,7,2,1)
(8,6,3,2,1) (8,6,4,3,1)
(8,7,4,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A100824
Number of partitions of n with at most one odd part.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 3, 7, 5, 12, 7, 19, 11, 30, 15, 45, 22, 67, 30, 97, 42, 139, 56, 195, 77, 272, 101, 373, 135, 508, 176, 684, 231, 915, 297, 1212, 385, 1597, 490, 2087, 627, 2714, 792, 3506, 1002, 4508, 1255, 5763, 1575, 7338, 1958, 9296, 2436, 11732, 3010, 14742
Offset: 0
From _Gus Wiseman_, Jan 21 2022: (Start)
The a(1) = 1 through a(9) = 12 partitions with at most one odd part:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (22) (32) (42) (43) (44) (54)
(41) (222) (52) (62) (63)
(221) (61) (422) (72)
(322) (2222) (81)
(421) (432)
(2221) (441)
(522)
(621)
(3222)
(4221)
(22221)
(End)
The case of alternating sum 0 (equality) is
A000070.
A multiplicative version is
A339846.
A058695 = partitions of odd numbers.
A277103 = partitions with the same number of odd parts as their conjugate.
Cf.
A000984,
A001791,
A008549,
A097805,
A119620,
A182616,
A236559,
A236913,
A236914,
A304620,
A344607,
A345958,
A347443.
-
seq(coeff(convert(series((1+x/(1-x^2))/mul(1-x^(2*i),i=1..100),x,100),polynom),x,n),n=0..60); (C. Ronaldo)
-
nmax = 50; CoefficientList[Series[(1+x/(1-x^2)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]<=1&]],{n,0,30}] (* _Gus Wiseman, Jan 21 2022 *)
-
a(n) = if(n%2==0, numbpart(n/2), sum(i=1, (n+1)\2, numbpart((n-2*i+1)\2))) \\ David A. Corneth, Jan 23 2022
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
A352130
Number of strict integer partitions of n with as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 65, 72, 79, 86, 93, 102, 111, 121, 132, 143, 155, 169, 183, 197, 213, 231, 251, 271, 292, 315, 340, 367, 396
Offset: 0
The a(n) strict partitions for selected n:
n = 2 7 9 13 14 15 16
--------------------------------------------------------------------
(2) (6,1) (8,1) (12,1) (14) (14,1) (16)
(4,2,1) (4,3,2) (6,4,3) (6,5,3) (6,5,4) (8,5,3)
(6,2,1) (8,3,2) (10,3,1) (8,4,3) (12,3,1)
(10,2,1) (6,4,3,1) (10,3,2) (6,5,4,1)
(8,3,2,1) (12,2,1) (8,4,3,1)
(6,5,3,1) (10,3,2,1)
(6,4,3,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
Cf.
A027187,
A027193,
A103919,
A122111,
A236559,
A325039,
A344607,
A344651,
A345196,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A304620
Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 15, 22, 34, 48, 70, 97, 137, 186, 255, 341, 459, 605, 800, 1042, 1359, 1751, 2256, 2879, 3672, 4645, 5869, 7367, 9234, 11508, 14319, 17730, 21916, 26975, 33143, 40570, 49575, 60376, 73402, 88974, 107666, 129933, 156546, 188148, 225767, 270300, 323115, 385453
Offset: 0
The version for even instead of odd greatest part is
A306145.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A000070 counts partitions with alternating sum 1.
A067661 counts strict partitions of even length.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A000097,
A006330,
A027193,
A030229,
A067659,
A236559,
A236914,
A239829,
A239830,
A318156,
A338907,
A344611.
-
nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k)/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 47; CoefficientList[Series[(1 + EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 26 2021 *)
A352131
Number of strict integer partitions of n with same number of even parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 4, 5, 5, 5, 6, 7, 7, 8, 10, 10, 10, 12, 14, 15, 14, 17, 21, 20, 20, 25, 28, 28, 29, 34, 39, 39, 40, 47, 52, 53, 56, 64, 70, 71, 77, 86, 92, 97, 104, 114, 122
Offset: 0
The a(n) strict partitions for selected n:
n = 3 10 14 18 21 24
----------------------------------------------------------------------
(2,1) (6,4) (8,6) (10,8) (11,10) (8,7,5,4)
(4,3,2,1) (5,4,3,2) (6,5,4,3) (8,6,4,3) (9,8,4,3)
(6,5,2,1) (7,6,3,2) (8,7,4,2) (10,8,4,2)
(8,7,2,1) (10,8,2,1) (10,9,3,2)
(6,5,4,3,2,1) (11,10,2,1)
(8,6,4,3,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
Cf.
A027187,
A027193,
A103919,
A122111,
A236559,
A325039,
A344607,
A344651,
A345196,
A350942,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]
A306145
Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k+1) / Product_{j=1..2*k+1} (1 - x^j).
Original entry on oeis.org
0, 1, 2, 4, 6, 10, 15, 23, 33, 49, 69, 98, 135, 187, 253, 343, 456, 607, 797, 1045, 1355, 1755, 2252, 2884, 3666, 4651, 5863, 7375, 9226, 11517, 14310, 17741, 21904, 26988, 33130, 40586, 49558, 60394, 73383, 88996, 107642, 129958, 156519, 188178, 225734, 270335, 323078, 385494
Offset: 0
The ordered version appears to be
A087447 modulo initial terms.
The version for odd instead of even-length partitions is
A304620.
The case of strict partitions is
A318156.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A000070,
A000097,
A006330,
A030229,
A067659,
A236559,
A236914,
A239829,
A239830,
A338907,
A344611.
-
nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k + 1)/Product[(1 - x^j), {j, 1, 2 k + 1}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 47; CoefficientList[Series[(1 - EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 23 2021 *)
A343942
Number of even-length strict integer partitions of 2n+1.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 52, 71, 96, 128, 170, 224, 292, 380, 491, 630, 805, 1024, 1295, 1632, 2049, 2560, 3189, 3959, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29249, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937, 172928
Offset: 0
The a(1) = 1 through a(7) = 13 strict partitions:
(2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7)
(4,1) (5,2) (6,3) (7,4) (8,5) (9,6)
(6,1) (7,2) (8,3) (9,4) (10,5)
(8,1) (9,2) (10,3) (11,4)
(10,1) (11,2) (12,3)
(5,3,2,1) (12,1) (13,2)
(5,4,3,1) (14,1)
(6,4,2,1) (6,4,3,2)
(7,3,2,1) (6,5,3,1)
(7,4,3,1)
(7,5,2,1)
(8,4,2,1)
(9,3,2,1)
The opposite type of strict partition (odd length and even sum) is
A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A000070,
A000097,
A030229,
A035294,
A067659,
A236559,
A338907,
A343941,
A344649,
A344654,
A344739.
-
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,15}]
A351595
Number of odd-length integer partitions y of n such that y_i > y_{i+1} for all even i.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 16, 20, 24, 30, 35, 44, 52, 63, 74, 90, 105, 126, 148, 175, 204, 242, 280, 330, 382, 446, 515, 600, 690, 800, 919, 1060, 1214, 1398, 1595, 1830, 2086, 2384, 2711, 3092, 3506, 3988, 4516, 5122, 5788, 6552, 7388, 8345
Offset: 0
The a(1) = 1 through a(12) = 10 partitions (A..C = 10..12):
1 2 3 4 5 6 7 8 9 A B C
221 321 331 332 432 442 443 543
421 431 441 532 542 552
521 531 541 551 642
621 631 632 651
721 641 732
731 741
821 831
33221 921
43221
The ordered version (compositions) is
A000213 shifted right once.
All odd-length partitions are counted by
A027193.
This appears to be the odd-length case of
A122135, even-length
A122134.
The case that is constant at odd indices:
For equality instead of inequality:
- odd-length:
A000009 (except at 0)
-
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]>#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]
A352128
Number of strict integer partitions of n with (1) as many even parts as odd parts, and (2) as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 2, 3, 0, 3, 0, 2, 2, 5, 2, 5, 4, 6, 7, 7, 8, 8, 9, 9, 13, 9, 14, 12, 20, 13, 25, 17, 33, 23, 40, 26, 50, 33, 59, 39, 68, 45, 84, 58, 92, 70, 115, 88, 132, 109, 156, 139, 182, 172, 212, 211
Offset: 0
The a(n) strict partitions for selected n:
n = 3 18 22 28 31 32
-----------------------------------------------------------------------
(2,1) (8,5,3,2) (8,6,5,3) (12,7,5,4) (10,7,5,4,3,2) (12,8,7,5)
(8,6,3,1) (8,7,5,2) (12,8,5,3) (10,7,6,5,2,1) (12,9,7,4)
(12,7,2,1) (12,9,5,2) (10,8,5,4,3,1) (16,9,4,3)
(16,9,2,1) (10,9,6,3,2,1) (12,10,7,3)
(12,10,5,1) (12,11,7,2)
(16,11,4,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are two other double-pairings of statistics:
Cf.
A000070,
A014105,
A088218,
A098123,
A195017,
A236559,
A236914,
A241638,
A325700,
A350839,
A350941.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
Comments