cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A347448 Number of integer partitions of n with alternating product > 1.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 120, 161, 209, 275, 355, 460, 585, 750, 946, 1199, 1498, 1881, 2335, 2909, 3583, 4430, 5428, 6666, 8118, 9912, 12013, 14586, 17592, 21252, 25525, 30695, 36711, 43956, 52382, 62469, 74173, 88132, 104303, 123499
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(2) = 1 through a(7) = 12 partitions:
  (2)  (3)   (4)    (5)     (6)      (7)
       (21)  (31)   (32)    (42)     (43)
             (211)  (41)    (51)     (52)
                    (311)   (222)    (61)
                    (2111)  (321)    (322)
                            (411)    (421)
                            (3111)   (511)
                            (21111)  (2221)
                                     (3211)
                                     (4111)
                                     (31111)
                                     (211111)
		

Crossrefs

The strict case is A000009, except that a(0) = a(1) = 0.
Allowing any alternating product >= 1 gives A000041, reverse A344607.
Ranked by A028983 (reverse A347465), which has complement A028982.
The complement is counted by A119620, reverse A347443.
The multiplicative version is A339890, weak A347456, reverse A347705.
The even-length case is A344608.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
The reverse version is A347449, also the odd-length case.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.

Programs

  • Maple
    a:= n-> (p-> p(n)-p(iquo(n, 2)))(combinat[numbpart]):
    seq(a(n), n=0..63);  # Alois P. Heinz, Oct 04 2021
  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[#]>1&]],{n,0,30}]

Formula

a(n) = A000041(n) - A119620(n).

A347444 Number of odd-length integer partitions of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 8, 7, 14, 13, 24, 21, 40, 35, 62, 55, 99, 85, 151, 128, 224, 195, 331, 283, 481, 416, 690, 593, 980, 844, 1379, 1189, 1918, 1665, 2643, 2292, 3630, 3161, 4920, 4299, 6659, 5833, 8931, 7851, 11905, 10526, 15805, 13987, 20872, 18560, 27398
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

We define the alternating product of a sequence (y_1, ... ,y_k) to be the Product_i y_i^((-1)^(i-1)).
The reverse version (integer reverse-alternating product) is the same.

Examples

			The a(1) = 1 through a(9) = 14 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)        (9)
            (111)  (211)  (221)    (222)    (322)      (332)      (333)
                          (311)    (411)    (331)      (422)      (441)
                          (11111)  (21111)  (421)      (611)      (522)
                                            (511)      (22211)    (621)
                                            (22111)    (41111)    (711)
                                            (31111)    (2111111)  (22221)
                                            (1111111)             (32211)
                                                                  (33111)
                                                                  (42111)
                                                                  (51111)
                                                                  (2211111)
                                                                  (3111111)
                                                                  (111111111)
		

Crossrefs

The reciprocal version is A035363.
Allowing any alternating product gives A027193.
The multiplicative version (factorizations) is A347441.
Allowing any length gives A347446, reverse A347445.
Allowing any length and alternating product > 1 gives A347448.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347453.
The even-length instead of odd-length version is A347704.
A000041 counts partitions.
A000302 counts odd-length compositions, ranked by A053738.
A025047 counts wiggly compositions.
A026424 lists numbers with odd bigomega.
A027187 counts partitions of even length, strict A067661.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts odd-length factorizations.
A347437 counts factorizations with integer alternating product.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]

A347451 Numbers whose multiset of prime indices has integer reciprocal alternating product.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 14, 16, 18, 21, 22, 24, 25, 26, 32, 34, 36, 38, 39, 40, 46, 49, 50, 54, 56, 57, 58, 62, 64, 65, 72, 74, 81, 82, 84, 86, 87, 88, 90, 94, 96, 98, 100, 104, 106, 111, 115, 118, 121, 122, 126, 128, 129, 133, 134, 136, 142, 144, 146, 150, 152
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
Also Heinz numbers integer partitions with integer reverse-reciprocal alternating product, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The terms and their prime indices begin:
      1: {}            32: {1,1,1,1,1}       65: {3,6}
      2: {1}           34: {1,7}             72: {1,1,1,2,2}
      4: {1,1}         36: {1,1,2,2}         74: {1,12}
      6: {1,2}         38: {1,8}             81: {2,2,2,2}
      8: {1,1,1}       39: {2,6}             82: {1,13}
      9: {2,2}         40: {1,1,1,3}         84: {1,1,2,4}
     10: {1,3}         46: {1,9}             86: {1,14}
     14: {1,4}         49: {4,4}             87: {2,10}
     16: {1,1,1,1}     50: {1,3,3}           88: {1,1,1,5}
     18: {1,2,2}       54: {1,2,2,2}         90: {1,2,2,3}
     21: {2,4}         56: {1,1,1,4}         94: {1,15}
     22: {1,5}         57: {2,8}             96: {1,1,1,1,1,2}
     24: {1,1,1,2}     58: {1,10}            98: {1,4,4}
     25: {3,3}         62: {1,11}           100: {1,1,3,3}
     26: {1,6}         64: {1,1,1,1,1,1}    104: {1,1,1,6}
		

Crossrefs

The version for reversed prime indices is A028982, counted by A119620.
The additive version is A119899, strict A028260.
Allowing any alternating product >= 1 gives A344609.
Factorizations of this type are counted by A347439.
Allowing any alternating product <= 1 gives A347450.
The non-reciprocal version is A347454.
Allowing any alternating product > 1 gives A347465, reverse A028983.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347457 ranks partitions with integer alternating product.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],IntegerQ[1/altprod[primeMS[#]]]&]

A340931 Heinz numbers of integer partitions of odd numbers into an odd number of parts.

Original entry on oeis.org

2, 5, 8, 11, 17, 18, 20, 23, 31, 32, 41, 42, 44, 45, 47, 50, 59, 67, 68, 72, 73, 78, 80, 83, 92, 97, 98, 99, 103, 105, 109, 110, 114, 124, 125, 127, 128, 137, 149, 153, 157, 162, 164, 167, 168, 170, 174, 176, 179, 180, 182, 188, 191, 195, 197, 200, 207, 211
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This is a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with the corresponding partitions begins:
      2: (1)             50: (3,3,1)        109: (29)
      5: (3)             59: (17)           110: (5,3,1)
      8: (1,1,1)         67: (19)           114: (8,2,1)
     11: (5)             68: (7,1,1)        124: (11,1,1)
     17: (7)             72: (2,2,1,1,1)    125: (3,3,3)
     18: (2,2,1)         73: (21)           127: (31)
     20: (3,1,1)         78: (6,2,1)        128: (1,1,1,1,1,1,1)
     23: (9)             80: (3,1,1,1,1)    137: (33)
     31: (11)            83: (23)           149: (35)
     32: (1,1,1,1,1)     92: (9,1,1)        153: (7,2,2)
     41: (13)            97: (25)           157: (37)
     42: (4,2,1)         98: (4,4,1)        162: (2,2,2,2,1)
     44: (5,1,1)         99: (5,2,2)        164: (13,1,1)
     45: (3,2,2)        103: (27)           167: (39)
     47: (15)           105: (4,3,2)        168: (4,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A160786.
The even version is A236913 (A340784).
The case of where the prime indices are also odd is A300272.
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A027193 counts odd-length partitions (A026424).
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]

Formula

Intersection of A026424 and A300063.

A347449 Number of integer partitions of n with reverse-alternating product > 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 10, 11, 20, 22, 37, 41, 66, 75, 113, 129, 190, 218, 310, 358, 497, 576, 782, 908, 1212, 1411, 1851, 2156, 2793, 3255, 4163, 4853, 6142, 7159, 8972, 10451, 12989, 15123, 18646, 21689, 26561, 30867, 37556, 43599, 52743, 61161, 73593
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2021

Keywords

Comments

All such partitions have odd length.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(2) = 1 through a(9) = 11 partitions:
  (2)  (3)  (4)    (5)    (6)      (7)      (8)        (9)
            (211)  (311)  (222)    (322)    (332)      (333)
                          (321)    (421)    (422)      (432)
                          (411)    (511)    (431)      (522)
                          (21111)  (31111)  (521)      (531)
                                            (611)      (621)
                                            (22211)    (711)
                                            (32111)    (32211)
                                            (41111)    (42111)
                                            (2111111)  (51111)
                                                       (3111111)
		

Crossrefs

The strict case is A067659, except that a(0) = a(1) = 0.
The even bisection is A236559.
The non-reverse multiplicative version is A339890, weak A347456.
The case of >= 1 instead of > 1 is A344607.
The opposite version is A344608, also the non-reverse even-length case.
The complement is counted by A347443, non-reverse A119620.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
Reverse version of A347448; also the odd-length case.
The Heinz numbers of these partitions are the complement of A347450.
The multiplicative version (factorizations) is A347705.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A100824 counts partitions of n with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]

Formula

a(n) = A344607(n) - A119620(n).

A347459 Number of factorizations of n^2 with integer reciprocal alternating product.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 6, 3, 4, 1, 11, 1, 4, 4, 12, 1, 11, 1, 12, 4, 4, 1, 28, 3, 4, 6, 12, 1, 19, 1, 22, 4, 4, 4, 38, 1, 4, 4, 29, 1, 21, 1, 12, 11, 4, 1, 65, 3, 11, 4, 12, 1, 29, 4, 29, 4, 4, 1, 71, 1, 4, 11, 40, 4, 22, 1, 12, 4, 18, 1, 107, 1, 4, 11, 12, 4, 22, 1, 66, 12, 4, 1, 76, 4, 4, 4, 30, 1, 71, 4, 12, 4, 4, 4, 141
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2021

Keywords

Comments

We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
All such factorizations have even length.
Image appears to be 1, 3, 4, 6, 11, ... , missing some numbers such as 2, 5, 7, 8, 9, ...
The case of alternating product 1, the case of alternating sum 0, and the reverse version are all counted by A001055.

Examples

			The a(2) = 1 through a(10) = 4 factorizations:
    2*2  3*3  2*8      5*5  6*6      7*7  8*8          9*9      2*50
              4*4           2*18          2*32         3*27     5*20
              2*2*2*2       3*12          4*16         3*3*3*3  10*10
                            2*2*3*3       2*2*2*8               2*2*5*5
                                          2*2*4*4
                                          2*2*2*2*2*2
		

Crossrefs

Positions of 1's are 1 and A000040, squares A001248.
The additive version (partitions) is A000041, the even bisection of A119620.
Partitions of this type are ranked by A028982 and A347451.
The restriction to powers of 2 is A236913, the even bisection of A027187.
The nonsquared nonreciprocal even-length version is A347438.
This is the restriction to perfect squares of A347439.
The nonreciprocal version is A347458, non-squared A347437.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347457 ranks partitions with integer alternating product.
A347466 counts factorizations of n^2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}];
    Table[Length[Select[facs[n^2],IntegerQ[recaltprod[#]]&]],{n,100}]
  • PARI
    A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e))));
    A347459(n) = A347439(n^2); \\ Antti Karttunen, Jul 28 2024

Formula

a(2^n) = A236913(n).
a(n) = A347439(n^2).

Extensions

Data section extended up to a(96) by Antti Karttunen, Jul 28 2024

A100824 Number of partitions of n with at most one odd part.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 3, 7, 5, 12, 7, 19, 11, 30, 15, 45, 22, 67, 30, 97, 42, 139, 56, 195, 77, 272, 101, 373, 135, 508, 176, 684, 231, 915, 297, 1212, 385, 1597, 490, 2087, 627, 2714, 792, 3506, 1002, 4508, 1255, 5763, 1575, 7338, 1958, 9296, 2436, 11732, 3010, 14742
Offset: 0

Views

Author

Vladeta Jovovic, Jan 13 2005

Keywords

Comments

From Gus Wiseman, Jan 21 2022: (Start)
Also the number of integer partitions of n with alternating sum <= 1, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These are the conjugates of partitions with at most one odd part. For example, the a(1) = 1 through a(9) = 12 partitions with alternating sum <= 1 are:
1 11 21 22 32 33 43 44 54
111 1111 221 2211 331 2222 441
2111 111111 2221 3311 3222
11111 3211 221111 3321
22111 11111111 4311
211111 22221
1111111 33111
222111
321111
2211111
21111111
111111111
(End)

Examples

			From _Gus Wiseman_, Jan 21 2022: (Start)
The a(1) = 1 through a(9) = 12 partitions with at most one odd part:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)     (8)     (9)
            (21)  (22)  (32)   (42)   (43)    (44)    (54)
                        (41)   (222)  (52)    (62)    (63)
                        (221)         (61)    (422)   (72)
                                      (322)   (2222)  (81)
                                      (421)           (432)
                                      (2221)          (441)
                                                      (522)
                                                      (621)
                                                      (3222)
                                                      (4221)
                                                      (22221)
(End)
		

Crossrefs

The case of alternating sum 0 (equality) is A000070.
A multiplicative version is A339846.
These partitions are ranked by A349150, conjugate A349151.
A000041 = integer partitions, strict A000009.
A027187 = partitions of even length, strict A067661, ranked by A028260.
A027193 = partitions of odd length, ranked by A026424.
A058695 = partitions of odd numbers.
A103919 = partitions by sum and alternating sum (reverse: A344612).
A277103 = partitions with the same number of odd parts as their conjugate.

Programs

  • Maple
    seq(coeff(convert(series((1+x/(1-x^2))/mul(1-x^(2*i),i=1..100),x,100),polynom),x,n),n=0..60); (C. Ronaldo)
  • Mathematica
    nmax = 50; CoefficientList[Series[(1+x/(1-x^2)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
    Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]<=1&]],{n,0,30}] (* _Gus Wiseman, Jan 21 2022 *)
  • PARI
    a(n) = if(n%2==0, numbpart(n/2), sum(i=1, (n+1)\2, numbpart((n-2*i+1)\2))) \\ David A. Corneth, Jan 23 2022

Formula

G.f.: (1+x/(1-x^2))/Product(1-x^(2*i), i=1..infinity). More generally, g.f. for number of partitions of n with at most k odd parts is (1+Sum(x^i/Product(1-x^(2*j), j=1..i), i=1..k))/Product(1-x^(2*i), i=1..infinity).
a(n) ~ exp(sqrt(n/3)*Pi) / (2*sqrt(3)*n) if n is even and a(n) ~ exp(sqrt(n/3)*Pi) / (2*Pi*sqrt(n)) if n is odd. - Vaclav Kotesovec, Mar 07 2016
a(2*n) = A000041(n). a(2*n + 1) = A000070(n). - David A. Corneth, Jan 23 2022

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005

A345959 Numbers whose prime indices have alternating sum -1.

Original entry on oeis.org

6, 15, 24, 35, 54, 60, 77, 96, 135, 140, 143, 150, 216, 221, 240, 294, 308, 315, 323, 375, 384, 437, 486, 540, 560, 572, 600, 667, 693, 726, 735, 864, 875, 884, 899, 960, 1014, 1147, 1176, 1215, 1232, 1260, 1287, 1292, 1350, 1500, 1517, 1536, 1715, 1734, 1748
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also numbers with even Omega (A001222) and exactly one odd conjugate prime index. Conjugate prime indices are listed by A321650, ranked by A122111.

Examples

			The initial terms and their prime indices:
    6: {1,2}
   15: {2,3}
   24: {1,1,1,2}
   35: {3,4}
   54: {1,2,2,2}
   60: {1,1,2,3}
   77: {4,5}
   96: {1,1,1,1,1,2}
  135: {2,2,2,3}
  140: {1,1,3,4}
  143: {5,6}
  150: {1,2,3,3}
  216: {1,1,1,2,2,2}
  221: {6,7}
  240: {1,1,1,1,2,3}
		

Crossrefs

These multisets are counted by A000070.
The k = 0 version is A000290, counted by A000041.
The k = 1 version is A001105.
The k > 0 version is A026424.
These are the positions of -1's in A316524.
The k = 2 version is A345960.
The k = -2 version is A345962.
A000984/A345909/A345911 count/rank compositions with alternating sum 1.
A001791/A345910/A345912 count/rank compositions with alternating sum -1.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534/A325535 count separable/inseparable partitions.
A344607 counts partitions with reverse-alternating sum >= 0.
A344616 gives the alternating sum of reversed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[primeMS[#]]==-1&]

A329888 a(n) = A329900(A329602(n)); Heinz number of the even bisection (even-indexed parts) of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 5, 2, 3, 2, 1, 3, 1, 4, 3, 2, 5, 6, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 7, 5, 3, 2, 1, 6, 5, 4, 3, 2, 1, 6, 1, 2, 3, 8, 5, 3, 1, 2, 3, 5, 1, 6, 1, 2, 5, 2, 7, 3, 1, 4, 9, 2, 1, 6, 5, 2, 3, 4, 1, 6, 7, 2, 3, 2, 5, 8, 1, 7, 3, 10, 1, 3, 1, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

From Gus Wiseman, Aug 05 2021 and Antti Karttunen, Oct 13 2021: (Start)
Also the product of primes at even positions in the weakly decreasing list (with multiplicity) of prime factors of n. For example, the prime factors of 108 are (3,3,3,2,2), with even bisection (3,2), with product 6, so a(108) = 6.
Proof: A108951(n) gives a number with the same largest prime factor (A006530) and its exponent (A071178) as in n, and with each smaller prime p = 2, 3, 5, 7, ... < A006530(n) having as its exponent the partial sum of the exponents of all prime factors >= p present in n (with primes not present in n having the exponent 0). Then applying A000188 replaces each such "partial sum exponent" k with floor(k/2). Finally, A319626 replaces those halved exponents with their first differences (here the exponent of the largest prime present stays intact, because the next larger prime's exponent is 0 in n). It should be easy to see that if prime q is not present in n (i.e., does not divide it), then neither it is present in a(n). Moreover, if the partial sum exponent of q is odd and only one larger than the partial sum exponent of the next larger prime factor of n, then q will not be present in a(n), while in all other cases q is present in a(n). See also the last example.
(End)

Examples

			From _Gus Wiseman_, Aug 15 2021: (Start)
The list of all numbers with image 12 and their corresponding prime factors begins:
  144: (3,3,2,2,2,2)
  216: (3,3,3,2,2,2)
  240: (5,3,2,2,2,2)
  288: (3,3,2,2,2,2,2)
  336: (7,3,2,2,2,2)
  360: (5,3,3,2,2,2)
(End)
The positions from the left are indexed as 1, 2, 3, ..., etc, so e.g., for 240 we pick the second, the fourth and the sixth prime factor, 3, 2 and 2, to obtain a(240) = 3*2*2 = 12. For 288, we similarly pick the second (3), the fourth (2) and the sixth (2) to obtain a(288) = 3*2*2 = 12. - _Antti Karttunen_, Oct 13 2021
Consider n = 11945934 = 2*3*3*3*7*11*13*13*17. Its primorial inflation is A108951(11945934) = 96478365991115908800000 = 2^9 * 3^8 * 5^5 * 7^5 * 11^4 * 13^3 * 17^1. Applying A000188 to this halves each exponent (floored down if the exponent is odd), leaving the factors 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 = 2497294800. Then applying A319626 to this number retains the largest prime factor (and its exponent), and subtracts from the exponent of each of the rest of primes the exponent of the next larger prime, so from 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 we get 2^(4-4) * 3^(4-2) * 5^(2-2) * 7^(2-2) * 11^(2-1) * 13^1 = 3^2 * 11^1 * 13^1 = 1287 = a(11945934), which is obtained also by selecting every second prime from the list [17, 13, 13, 11, 7, 3, 3, 3, 2] and taking their product. - _Antti Karttunen_, Oct 15 2021
		

Crossrefs

A left inverse of A000290.
Positions of 1's are A008578.
Positions of primes are A168645.
The sum of prime indices of a(n) is A346700(n).
The odd version is A346701.
The odd non-reverse version is A346703.
The non-reverse version is A346704.
The version for standard compositions is A346705, odd A346702.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A001414 adds up prime factors, row sums of A027746.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A346633 adds up the even bisection of standard compositions.
A346698 adds up the even bisection of prime indices.

Programs

  • Mathematica
    Table[Times@@Last/@Partition[Reverse[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]],2],{n,100}] (* Gus Wiseman, Oct 13 2021 *)
  • PARI
    A329888(n) = A329900(A329602(n));
    
  • PARI
    A329888(n) = if(1==n,n,my(f=factor(n),m=1,p=0); forstep(k=#f~,1,-1,while(f[k,2], m *= f[k,1]^(p%2); f[k,2]--; p++)); (m)); \\ (After Wiseman's new interpretation) - Antti Karttunen, Sep 21 2021

Formula

A108951(a(n)) = A329602(n).
a(n^2) = n for all n >= 1.
a(n) * A346701(n) = n. - Gus Wiseman, Aug 07 2021
A056239(a(n)) = A346700(n). - Gus Wiseman, Aug 07 2021
Antti Karttunen, Sep 21 2021
From Antti Karttunen, Oct 13 2021: (Start)
For all x in A102750, a(x) = a(A253553(x)). (End)

Extensions

Name amended with Gus Wiseman's new interpretation - Antti Karttunen, Oct 13 2021

A340933 Numbers whose least prime index is even. Heinz numbers of integer partitions whose last part is even.

Original entry on oeis.org

3, 7, 9, 13, 15, 19, 21, 27, 29, 33, 37, 39, 43, 45, 49, 51, 53, 57, 61, 63, 69, 71, 75, 77, 79, 81, 87, 89, 91, 93, 99, 101, 105, 107, 111, 113, 117, 119, 123, 129, 131, 133, 135, 139, 141, 147, 151, 153, 159, 161, 163, 165, 169, 171, 173, 177, 181, 183
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not counted.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         51: {2,7}         99: {2,2,5}
      7: {4}         53: {16}         101: {26}
      9: {2,2}       57: {2,8}        105: {2,3,4}
     13: {6}         61: {18}         107: {28}
     15: {2,3}       63: {2,2,4}      111: {2,12}
     19: {8}         69: {2,9}        113: {30}
     21: {2,4}       71: {20}         117: {2,2,6}
     27: {2,2,2}     75: {2,3,3}      119: {4,7}
     29: {10}        77: {4,5}        123: {2,13}
     33: {2,5}       79: {22}         129: {2,14}
     37: {12}        81: {2,2,2,2}    131: {32}
     39: {2,6}       87: {2,10}       133: {4,8}
     43: {14}        89: {24}         135: {2,2,2,3}
     45: {2,2,3}     91: {4,6}        139: {34}
     49: {4,4}       93: {2,11}       141: {2,15}
		

Crossrefs

These partitions are counted by A026805.
Looking at length or at maximum gives A028260/A244990, counted by A027187.
If all prime indices are even we get A066207, counted by A035363.
The complement is {1} \/ A340932, counted by A026804.
A001222 counts prime factors.
A005843 lists even numbers.
A031215 lists even-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058695 counts partitions of even numbers, ranked by A300061.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Select[Range[2,100],EvenQ[PrimePi[FactorInteger[#][[1,1]]]]&]

Formula

A055396(a(n)) belongs to A005843.
Closed under multiplication.
Previous Showing 31-40 of 48 results. Next