A077417
Chebyshev T-sequence with Diophantine property.
Original entry on oeis.org
1, 11, 131, 1561, 18601, 221651, 2641211, 31472881, 375033361, 4468927451, 53252096051, 634556225161, 7561422605881, 90102515045411, 1073668757939051, 12793922580223201, 152453402204739361, 1816646903876649131, 21647309444315050211
Offset: 0
G.f. = 1 + 11*x + 131*x^2 + 1561*x^3 + 18601*x^4 221651*x^5 + 2641211*x^6 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (12,-1).
- Index entries for sequences related to Chebyshev polynomials.
Cf. similar sequences listed in
A238379.
-
I:=[1,11]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
-
CoefficientList[Series[(1 - x)/(1 - 12 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
LinearRecurrence[{12,-1},{1,11},30] (* Harvey P. Dale, Apr 09 2015 *)
a[ n_] := With[{x = Sqrt[7/2]}, ChebyshevT[2 n + 1, x]/x] // Expand; (* Michael Somos, Jun 29 2019 *)
-
my(x='x+O('x^30)); Vec((1-x)/(1-12*x+x^2)) \\ G. C. Greubel, Jan 18 2018
-
{a(n) = my(x = quadgen(56)/2); simplify(polchebyshev(2*n + 1, 1, x)/x)}; /* Michael Somos, Jun 29 2019 */
A157014
Expansion of x*(1-x)/(1 - 22*x + x^2).
Original entry on oeis.org
1, 21, 461, 10121, 222201, 4878301, 107100421, 2351330961, 51622180721, 1133336644901, 24881784007101, 546265911511321, 11992968269241961, 263299036011811821, 5780585823990618101, 126909589091781786401, 2786230374195208682721, 61170158643202809233461
Offset: 1
Cf. similar sequences listed in
A238379.
-
a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
-
I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
-
seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
-
CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041049 *)
a[30, 20] (* Gerry Martens, Jun 07 2015 *)
Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
-
Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
-
[chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
A070998
a(n) = 9*a(n-1) - a(n-2) for n > 0, a(0)=1, a(-1)=1.
Original entry on oeis.org
1, 8, 71, 631, 5608, 49841, 442961, 3936808, 34988311, 310957991, 2763633608, 24561744481, 218292066721, 1940066856008, 17242309637351, 153240719880151, 1361924169284008, 12104076803675921, 107574767063799281, 956068826770517608
Offset: 0
Joe Keane (jgk(AT)jgk.org), May 18 2002
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (9,-1).
Cf. similar sequences listed in
A238379.
-
I:=[1,8]; [n le 2 select I[n] else 9*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
-
CoefficientList[Series[(1 - x)/(1 - 9 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
LinearRecurrence[{9,-1},{1,8},30] (* Harvey P. Dale, Sep 24 2015 *)
-
[lucas_number1(n, 9, 1) - lucas_number1(n-1, 9, 1) for n in range(1, 19)] # Zerinvary Lajos, Nov 10 2009
A077420
Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.
Original entry on oeis.org
1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, 1722749176961, 58522759015841, 1988051057361633, 67535213191279681, 2294209197446147521, 77935577499977736033, 2647515425801796877601
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Z. Cerin and G. M. Gianella, On sums of squares of Pell-Lucas Numbers, INTEGERS 6 (2006) #A15
- Tanya Khovanova, Recursive Sequences
- S. Vidhyalakshmi, V. Krithika, and K. Agalya, On The Negative Pell Equation y^2 = 72x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 2, February (2016).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (34,-1).
Cf. similar sequences listed in
A238379.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in
A302329. This is the case k=3.
-
I:=[1,33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
LinearRecurrence[{34,-1},{1,33},20] (* Vincenzo Librandi, Nov 22 2011 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041027 *)
a[18, 20] (* Gerry Martens, Jun 07 2015 *)
-
makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6),n,0,14); /* _Bruno Berselli, Nov 22 2011 */
-
Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
A078922
a(n) = 11*a(n-1) - a(n-2) with a(1)=1, a(2) = 10.
Original entry on oeis.org
1, 10, 109, 1189, 12970, 141481, 1543321, 16835050, 183642229, 2003229469, 21851881930, 238367471761, 2600190307441, 28363725910090, 309400794703549, 3375045015828949, 36816094379414890, 401601993157734841
Offset: 1
Nick Renton (ner(AT)nickrenton.com), Jan 11 2003
All positive solutions of the Pell equation x^2 - 13*y^2 = -4 are
(x,y)= (3=3*1,1), (36=3*12,10), (393=3*131,109), (4287=3*1429,1189 ), ...
- G. C. Greubel, Table of n, a(n) for n = 1..960
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Index entries for sequences related to Chebyshev polynomials..
- Index entries for linear recurrences with constant coefficients, signature (11,-1).
Cf. similar sequences listed in
A238379.
-
a:=[1,10];; for n in [3..30] do a[n]:=11*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(1-x)/(1-11*x+x^2) )); // G. C. Greubel, Jan 12 2019
-
LinearRecurrence[{11,-1},{1,10},20] (* Harvey P. Dale, Jan 26 2014 *)
Table[Fibonacci[2n-1, 3], {n, 1, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
a(n)=([0,1;-1,11]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
-
my(x='x+O('x^30)); Vec(x*(1-x)/(1-11*x+x^2)) \\ G. C. Greubel, Jan 12 2019
-
(x*(1-x)/(1-11*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
Original entry on oeis.org
1, 9, 89, 881, 8721, 86329, 854569, 8459361, 83739041, 828931049, 8205571449, 81226783441, 804062262961, 7959395846169, 78789896198729, 779939566141121, 7720605765212481, 76426118085983689, 756540575094624409, 7488979632860260401, 74133255753507979601, 733843577902219535609
Offset: 0
1 + 9*x + 89*x^2 + 881*x^3 + 8721*x^4 + 86329*x^5 + ...
- H. Brocard, Note #2049, L'Intermédiaire des Mathématiciens, 8 (1901), pp. 212-213. - N. J. A. Sloane, Mar 02 2022
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2024.
- Bruno Deschamps, Sur les bonnes valeurs initiales de la suite de Lucas-Lehmer, Journal of Number Theory, Volume 130, Issue 12, December 2010, Pages 2658-2670.
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (10, -1).
Cf. similar sequences listed in
A238379.
-
CoefficientList[Series[(1 - x)/(1 - 10 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041007, A041039 *)
a[6, 20] (* Gerry Martens, Jun 07 2015 *)
-
{a(n) = subst( poltchebi(n+1) + poltchebi(n), x, 5) / 6} /* Michael Somos, Jan 25 2013 */
-
[lucas_number1(n,10,1)-lucas_number1(n-1,10,1) for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
A160682
The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.
Original entry on oeis.org
1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Index entries for the Pell equation
- Index entries for linear recurrences with constant coefficients, signature (15,-1).
Cf. similar sequences listed in
A238379.
-
I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
-
LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
-
a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016
A075839
Numbers k such that 11*k^2 - 2 is a square.
Original entry on oeis.org
1, 19, 379, 7561, 150841, 3009259, 60034339, 1197677521, 23893516081, 476672644099, 9509559365899, 189714514673881, 3784780734111721, 75505900167560539, 1506333222617099059, 30051158552174420641, 599516837820871313761, 11960285597865251854579
Offset: 1
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
Cf. similar sequences listed in
A238379.
-
a:=[1,19];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
I:=[1,19]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 20 2014
-
seq(coeff(series( x*(1-x)/(1-20*x+x^2), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 06 2019
-
LinearRecurrence[{20,-1},{1,19},20] (* Harvey P. Dale, Apr 13 2012 *)
Rest@CoefficientList[Series[x*(1-x)/(1-20x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 20 2014 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041015 *)
a[11, 20] (* Gerry Martens, Jun 07 2015 *)
-
a(n)=subst(poltchebi(n+1)+poltchebi(n),x,10)/11
-
def A075839_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)/(1-20*x+x^2) ).list()
a=A075839_list(20); a[1:] # G. C. Greubel, Dec 06 2019
A085260
Ratio-determined insertion sequence I(0.0833344) (see the link below).
Original entry on oeis.org
1, 12, 155, 2003, 25884, 334489, 4322473, 55857660, 721827107, 9327894731, 120540804396, 1557702562417, 20129592507025, 260127000028908, 3361521407868779, 43439651302265219, 561353945521579068
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..900
- A. Fink, R. K. Guy and M. Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math. 3 (2) (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types [local copy, corrected]
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (13,-1).
Cf. similar sequences listed in
A238379.
-
I:=[1,12]; [n le 2 select I[n] else 13*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
CoefficientList[Series[(1 - x)/(1 - 13 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{13,-1}, {1,12}, 30] (* G. C. Greubel, Jan 18 2018 *)
-
my(x='x+O('x^30)); Vec(x*(1-x)/(1-13*x+x^2)) \\ G. C. Greubel, Jan 18 2018
A157877
Expansion of (1-x)*x/(x^2-30*x+1).
Original entry on oeis.org
1, 29, 869, 26041, 780361, 23384789, 700763309, 20999514481, 629284671121, 18857540619149, 565096933903349, 16934050476481321, 507456417360536281, 15206758470339607109, 455695297692827676989, 13655652172314490702561, 409213869871741893399841
Offset: 1
Cf. similar sequences listed in
A238379.
-
I:=[1,29,869]; [n le 3 select I[n] else 30*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 25 2014
-
LinearRecurrence[{30,-1},{1,29},30] (* Harvey P. Dale, Dec 14 2011 *)
CoefficientList[Series[(1 - x)/(x^2 - 30 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
-
Vec((1-x)*x/(x^2-30*x+1)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
Comments