cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A302491 Prime numbers of squarefree index.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 41, 43, 47, 59, 67, 73, 79, 83, 101, 109, 113, 127, 137, 139, 149, 157, 163, 167, 179, 181, 191, 199, 211, 233, 241, 257, 269, 271, 277, 283, 293, 313, 317, 331, 347, 349, 353, 367, 373, 389, 397, 401, 421, 431, 439, 443, 449, 461
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Maple
    map(ithprime, select(numtheory:-issqrfree, [$1..500])); # Robert Israel, Nov 06 2023
  • Mathematica
    Prime/@Select[Range[100],SquareFreeQ]
  • PARI
    forprime(p=1, 500, if(issquarefree(primepi(p)), print1(p, ", "))) \\ Felix Fröhlich, Apr 10 2018
    
  • PARI
    list(lim)=my(v=List(),k); forprime(p=2,lim\1, if(issquarefree(k++), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 03 2023

Formula

a(n) = A000040(A005117(n)).
a(n) ~ kn log n, where k = Pi^2/6. - Charles R Greathouse IV, Aug 03 2023

A080688 Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 11, 13, 8, 10, 17, 9, 19, 14, 23, 29, 12, 15, 22, 31, 37, 26, 41, 21, 43, 16, 20, 25, 34, 47, 53, 18, 33, 38, 59, 61, 28, 35, 46, 67, 39, 71, 58, 73, 79, 24, 30, 44, 51, 55, 62, 83, 49, 89, 74, 97, 27, 57, 101, 52, 65, 82
Offset: 1

Views

Author

Alford Arnold, Mar 23 2003

Keywords

Comments

The number 12 can be written as 3*2*2, 4*3, 6*2 and 12 corresponding to each of the four values (12,15,22,31) in the example. Note that A001055(12) = 4. Since A001055(n) depends only on the least prime signature, the values 1,2,4,6,8,12,16,24,30,32,36,... A025487 are of special interest when counting multisets. (see for example, A035310 and A035341).
A064553(T(n,k)) = A080444(n,k) = n for k=1..A001055(n); T(n,1) = A064554(n); T(n,A001055(n)) = A064554(n). - Reinhard Zumkeller, Oct 01 2012
Row n is the sorted list of shifted Heinz numbers of factorizations of n into factors > 1, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - Gus Wiseman, Sep 05 2018

Examples

			a(18),a(19),a(20) and a(21) are 12,15,22 and 31 because A064553(12,15,22,31) = (12,12,12,12) similarly, A064553(36,45,66,76,93,95,118,121,149) = (36,36,36,36,36,36,36,36,36)
From _Gus Wiseman_, Sep 05 2018: (Start)
Triangle begins:
   1
   2
   3
   4  5
   7
   6 11
  13
   8 10 17
   9 19
  14 23
  29
  12 15 22 31
  37
  26 41
  21 43
  16 20 25 34 47
Corresponding triangle of factorizations begins:
  (),
  (2),
  (3),
  (2*2), (4),
  (5),
  (2*3), (6),
  (7),
  (2*2*2), (2*4), (8),
  (3*3), (9),
  (2*5), (10),
  (11),
  (2*2*3), (3*4), (2*6), (12).
(End)
		

Crossrefs

Programs

  • Haskell
    a080688 n k = a080688_row n !! (k-1)
    a080688_row n = map (+ 1) $ take (a001055 n) $
                    elemIndices n $ map fromInteger a064553_list
    a080688_tabl = map a080688_row [1..]
    a080688_list = concat a080688_tabl
    -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Sort[Table[Times@@Prime/@(f-1),{f,facs[n]}]],{n,20}] (* Gus Wiseman, Sep 05 2018 *)

Extensions

More terms from Sean A. Irvine, Oct 05 2011
Keyword tabf added and definition complemented accordingly by Reinhard Zumkeller, Oct 01 2012

A303547 Number of non-isomorphic periodic multiset partitions of weight n.

Original entry on oeis.org

0, 1, 1, 4, 1, 13, 1, 33, 10, 94, 1, 327, 1, 913, 100, 3017, 1, 10233, 1, 34236, 919, 119372, 1, 432234, 91, 1574227, 9945, 5916177, 1, 22734231, 1, 89003059, 119378, 356058543, 1000, 1453509039, 1, 6044132797, 1574233, 25612601420, 1, 110509543144, 1, 485161348076
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is periodic if its multiplicities have a common divisor greater than 1. For this sequence neither the parts nor their multiset union are required to be periodic, only the multiset of parts.

Examples

			Non-isomorphic representatives of the a(4) = 4 multiset partitions are {{1,1},{1,1}}, {{1,2},{1,2}}, {{1},{1},{1},{1}}, {{1},{1},{2},{2}}.
		

Crossrefs

Formula

a(n) = 1 if n is prime.
a(n) = A007716(n) - A303546(n).

Extensions

More terms from Jinyuan Wang, Jun 21 2020

A305150 Number of factorizations of n into distinct, pairwise indivisible factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 3, 1, 2, 1, 6, 2, 2, 2, 3, 1, 6, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 5, 1, 3, 5
Offset: 1

Views

Author

Gus Wiseman, May 26 2018

Keywords

Examples

			The a(60) = 6 factorizations are (3 * 4 * 5), (3 * 20), (4 * 15), (5 * 12), (6 * 10), (60). Missing from this list are (2 * 3 * 10), (2 * 5 * 6), (2 * 30).
		

Crossrefs

Programs

  • Mathematica
    facs[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facs[n/d], Min@@ # >= d &]], {d, Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], UnsameQ@@ # && Select[Tuples[Union[#], 2], UnsameQ@@ # && Divisible@@ # &] == {} &]], {n, 100}]
  • PARI
    A305150(n, m=n, facs=List([])) = if(1==n, 1, my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305150(n/d, d-1, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A045778(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

More terms from Antti Karttunen, Dec 06 2018

A318995 Totally additive with a(prime(n)) = n - 1.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 0, 2, 2, 4, 1, 5, 3, 3, 0, 6, 2, 7, 2, 4, 4, 8, 1, 4, 5, 3, 3, 9, 3, 10, 0, 5, 6, 5, 2, 11, 7, 6, 2, 12, 4, 13, 4, 4, 8, 14, 1, 6, 4, 7, 5, 15, 3, 6, 3, 8, 9, 16, 3, 17, 10, 5, 0, 7, 5, 18, 6, 9, 5, 19, 2, 20, 11, 5, 7, 7, 6, 21, 2, 4, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add((-1+numtheory[pi](i[1]))*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 07 2018
  • Mathematica
    Table[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>(PrimePi[p]-1)*k]//Total,{n,200}]
  • PARI
    a(n)={my(f=factor(n)); sum(i=1, #f~, my([p, e]=f[i, ]); (primepi(p)-1)*e)} \\ Andrew Howroyd, Sep 07 2018

A302493 Prime numbers of prime-power index.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 31, 41, 53, 59, 67, 83, 97, 103, 109, 127, 131, 157, 179, 191, 211, 227, 241, 277, 283, 311, 331, 353, 367, 401, 419, 431, 461, 509, 547, 563, 587, 599, 617, 661, 691, 709, 719, 739, 773, 797, 859, 877, 919, 967, 991, 1009, 1031
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    Prime/@Select[Range[100],Or[#===1,PrimePowerQ[#]]&]
  • PARI
    forprime(p=1, 500, if(p==2 || isprimepower(primepi(p)), print1(p, ", "))) \\ Felix Fröhlich, Apr 10 2018

Formula

a(n) = A000040(A000961(n)).

A302593 Numbers whose prime indices are powers of a common prime number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 64, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
31: {{5}}
32: {{},{},{},{},{}}
34: {{},{4}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
40: {{},{},{},{2}}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,q;
      uses numtheory;
      F:= map(pi, factorset(n));
      nops(`union`(op(map(factorset,F)))) <= 1
    end proc:
    select(filter, [$1..200]); # Robert Israel, Oct 22 2020
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&]

A298941 Number of permutations of the multiset of prime factors of n > 1 that are Lyndon words.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 1, 3
Offset: 2

Views

Author

Gus Wiseman, Jan 29 2018

Keywords

Examples

			The a(90) = 3 Lyndon permutations are {2,3,3,5}, {2,3,5,3}, {2,5,3,3}.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory):
    g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j,
            (l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)):
    a:= n-> g(map(i-> i[2], ifactors(n)[2])):
    seq(a(n), n=2..150);  # Alois P. Heinz, Feb 09 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Permutations[primeMS[n]],LyndonQ]],{n,2,60}]
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!);
    g[l_] := With[{n = Total[l]}, If[n == 0, 1, Sum[MoebiusMu[j] multinomial[ n/j, l/j], {j, Divisors[GCD @@ l]}]/n]];
    a[n_] := g[FactorInteger[n][[All, 2]]];
    a /@ Range[2, 150] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)

A302521 Odd numbers whose prime indices are squarefree and have disjoint prime indices. Numbers n such that the n-th multiset multisystem is a set partition.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 41, 43, 47, 51, 55, 59, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 215, 219, 221, 233, 241, 249, 255, 257, 269, 271
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set partitions.
01: {}
03: {{1}}
05: {{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
67: {{8}}
73: {{2,4}}
79: {{1,5}}
83: {{9}}
85: {{2},{4}}
93: {{1},{5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],UnsameQ@@Join@@primeMS/@primeMS[#]&]

A302798 Squarefree numbers that are prime or whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions that either consist of a single part or have pairwise coprime parts.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 66, 67, 69, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 113, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
03 : {2}
05 : {3}
06 : {1,2}
07 : {4}
10 : {1,3}
11 : {5}
13 : {6}
14 : {1,4}
15 : {2,3}
17 : {7}
19 : {8}
22 : {1,5}
23 : {9}
26 : {1,6}
29 : {10}
30 : {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&(PrimeQ[#]||CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]])]&]
Previous Showing 21-30 of 54 results. Next