A289993
Primes p such that gpf(A288814(p)) < q, where q is greatest prime < p.
Original entry on oeis.org
211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4327, 4441, 4547, 4561, 4751, 4783, 4813, 4861, 5147, 5261, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6673, 6883, 6947, 7103, 7283, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 7993, 8419, 8443
Offset: 1
p=211 is a candidate for inclusion because p-q = 211-199 = 12, and b(12)=35 is a term in A292081. Since r=197 is the next prime below q, p-r = 14 and b(14) = 33 < 35, 211 is in the sequence, of type 2.
Conversely, p=809, which also has gap p-q = 12, is not in the sequence because the only number n > 12 for which b(n) < b(12)=35 is n=14, and p-14 = 795 is not prime. Therefore b(809) = 797*b(12) = 27895, and 809 is of type 1.
-
N:= 10^7: # to get terms before the first prime p>3 such that A288814(p) > N
Res:= NULL:
for x from 4 to N do
if isprime(x) then next fi;
F:= ifactors(x)[2];
p:= add(t[1]*t[2],t=F);
if not isprime(p) then next fi;
if not assigned(A288814[p]) then
A288814[p]:= x;
w:= max(seq(t[1],t=F));
if w < prevprime(p) then
Res:= Res, p
fi
fi
od:
pmax:= Res[-1]:
Primes:= select(isprime, [seq(i,i=5..pmax,2)]):
B:= remove(p -> assigned(A288814[p]), Primes):
sort(select(`<`,[Res], min(B))); # Robert Israel, Oct 19 2017
-
\\ See PARI link. - David A. Corneth, Mar 23 2018
Original entry on oeis.org
2, 19, 29, 59, 79, 89, 131, 149, 151, 389, 479, 499, 521, 571, 631, 659, 701, 739, 919, 941, 971, 1069, 1279, 1289, 1361, 1381, 1451, 1471, 1489, 1669, 1949, 2069, 2089, 2131, 2549, 2609, 2749, 2791, 3011, 3109, 3181, 3251, 3361, 3389, 3539, 3581, 3659, 4049, 4091, 4139
Offset: 1
A288814(4*2) - A288814(3*2) = 15 - 8 = 7, therefore prime 2 is in the sequence;
A288814(4*19) - A288814(3*19) = 219 - 212 = 7, therefore prime 19 is a term.
A300097
Primes for which A288814 gives a new record.
Original entry on oeis.org
5, 7, 11, 17, 23, 29, 37, 53, 59, 67, 79, 89, 97, 127, 191, 211, 223, 307, 331, 479, 521, 541, 809, 877, 907, 1087, 1277, 1361, 1931, 2179, 2203, 2999, 3299, 4201, 4327, 4861, 5779, 7993, 8923, 12889, 14143, 15859, 16411, 16603, 18839, 19661, 24317, 25523, 28277
Offset: 1
-
isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
scompo(n) = forcomposite(k=4, ,if (isok(k, n), return(k)));
lista(nn) = {my(last = 0); forprime(p=4, nn, my(val = scompo(p)); if (val > last, print1(p, ", "); last = val););}
Original entry on oeis.org
6, 10, 28, 52, 76, 184, 248, 376, 424, 488, 584, 664, 1335, 3729, 3801, 6501, 7385, 9669, 10461, 16345, 17815, 26571, 27895, 28479, 45237, 69485, 81835, 123411, 124345, 140465, 207005, 341665, 361749, 396815, 526809, 592491, 890165, 977727, 1377485, 1992215, 2186585
Offset: 1
-
isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
scompo(n) = forcomposite(k=4, ,if (isok(k, n), return(k)));
lista(nn) = {my(last = 0); forprime(p=4, nn, my(val = scompo(p)); if (val > last, print1(val, ", "); last = val););}
A301592
Numbers k at which the ratio A288814(k) / k reaches a record high.
Original entry on oeis.org
4, 5, 6, 7, 8, 10, 11, 12, 17, 18, 24, 28, 29, 37, 53, 59, 67, 79, 89, 95, 97, 121, 123, 125, 223, 305, 329, 479, 521, 539, 541, 905, 1087, 1147, 1277, 1345, 1351, 1355, 1357, 5779, 8923, 10003, 11773, 12883, 19371, 19651, 19657, 28277, 31445
Offset: 1
A288814(10) / 10 = 21 / 10 and for n < 10 all ratios are less than 21 / 10, so 10 is in the sequence.
-
Block[{s = Array[If[PrimeQ@ #, 0, Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #]] &, 10^5, 2], t}, t = Table[(1 + FirstPosition[s, k][[1]])/k, {k, 4, LengthWhile[Differences@ Rest@ Union@ s, # == 1 &]}]; Map[3 + FirstPosition[t, #][[1]] &, Union@ FoldList[Max, t]]] (* Michael De Vlieger, Mar 26 2018 *)
-
isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
f(n) = forcomposite(k=1, , if (isok(k, n), return(k))); /* A288814 */
lista(nn) = {maxr = 0; for (n=4, nn, if ((newr=f(n)/n) > maxr, print1(n, ", "); maxr = newr););} \\ Michel Marcus, Mar 26 2018
A000792
a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 729, 972, 1458, 2187, 2916, 4374, 6561, 8748, 13122, 19683, 26244, 39366, 59049, 78732, 118098, 177147, 236196, 354294, 531441, 708588, 1062882, 1594323, 2125764, 3188646, 4782969, 6377292
Offset: 0
a{8} = 18 because we have 18 = (8-5)*a(5) = 3*6 and one can verify that this is the maximum.
a(5) = 6: the 7 partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) and the corresponding products are 5, 4, 6, 3, 4, 2 and 1; 6 is the largest.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 18*x^8 + ...
- B. R. Barwell, Cutting String and Arranging Counters, J. Rec. Math., 4 (1971), 164-168.
- B. R. Barwell, Journal of Recreational Mathematics, "Maximum Product": Solution to Prob. 2004;25(4) 1993, Baywood, NY.
- M. Capobianco and J. C. Molluzzo, Examples and Counterexamples in Graph Theory, p. 207. North-Holland: 1978.
- S. L. Greitzer, International Mathematical Olympiads 1959-1977, Prob. 1976/4 pp. 18;182-3 NML vol. 27 MAA 1978
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 396.
- P. R. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. Amer., 1991, pp. 30-31 and 188.
- L. C. Larson, Problem-Solving Through Problems. Problem 1.1.4 pp. 7. Springer-Verlag 1983.
- D. J. Newman, A Problem Seminar. Problem 15 pp. 5;15. Springer-Verlag 1982.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- R. Bercov and L. Moser, On Abelian permutation groups, Canad. Math. Bull. 8 (1965) 627-630.
- Walter Bridges and William Craig, On the distribution of the norm of partitions, arXiv:2308.00123 [math.CO], 2023.
- J. Arias de Reyna and J. van de Lune, The question "How many 1's are needed?" revisited, arXiv preprint arXiv:1404.1850 [math.NT], 2014. See M_n.
- J. Arias de Reyna and J. van de Lune, Algorithms for determining integer complexity, arXiv preprint arXiv:1404.2183 [math.NT], 2014.
- Nigel Derby, 96.21 The MaxProduct partition, The Mathematical Gazette 96:535 (2012), pp. 148-151.
- Tomislav Doslic, Maximum Product Over Partitions Into Distinct Parts, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.8.
- Hans Havermann, Tables of sum-of-prime-factors sequences (overview with links to the first 50000 sums).
- J. Iraids, K. Balodis, J. Cernenoks, M. Opmanis, R. Opmanis and K. Podnieks, Integer Complexity: Experimental and Analytical Results, arXiv preprint arXiv:1203.6462 [math.NT], 2012.
- Andrew Kenney and Caroline Shapcott, Maximum Part-Products of Odd Palindromic Compositions, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.6.
- E. F. Krause, Maximizing The Product of Summands, Mathematics Magazine, MAA Oct 1996, Vol. 69, no. 5 pp. 270-271.
- MathPro, 20000 Problems Under the Sea, Problem 14856.Putnam 1979/A1.
- J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965), 23-28.
- Natasha Morrison and Alex Scott, Maximizing the number of induced cycles in a graph, Preprint, 2016. See f_2(n).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- F. Pluvinage, Developing problem solving experiences in practical action projects, The Mathematics Enthusiast, ISSN 1551-3440, Vol. 10, nos. 1 & 2, pp. 219-244.
- D. A. Rawsthorne, How many 1's are needed?, Fib. Quart. 27 (1989), 14-17.
- J. T. Rowell, Solution Sequences for the Keyboard Problem and its Generalizations, Journal of Integer Sequences, 18 (2015), #15.10.7.
- Robert Schneider and Andrew V. Sills, The Product of Parts or "Norm" of a Partition, Integers (2020) Vol. 20A, Article #A13.
- J. Scholes, 40th Putnam 1979 Problem A1.
- J. Scholes, 18th IMO 1976 Problem 4.
- Andrew V. Sills and Robert Schneider, The product of parts or "norm" of a partition, arXiv:1904.08004 [math.NT], 2019.
- V. Vatter, Maximal independent sets and separating covers, Amer. Math. Monthly, 118 (2011), 418-423.
- Robert G. Wilson v, Letter to N. J. Sloane, circa 1991.
- A. C.-C. Yao, On a problem of Katona on minimal separating systems, Discrete Math., 15 (1976), 193-199.
- Index to sequences related to the complexity of n
- Index entries for linear recurrences with constant coefficients, signature (0,0,3).
Cf. array
A064364, rightmost (nonvanishing) numbers in row n >= 2.
See
A056240 and
A288814 for the minimal numbers whose prime factors sums up to n.
-
a000792 n = a000792_list !! n
a000792_list = 1 : f [1] where
f xs = y : f (y:xs) where y = maximum $ zipWith (*) [1..] xs
-- Reinhard Zumkeller, Dec 17 2011
-
I:=[1,1,2,3,4]; [n le 5 select I[n] else 3*Self(n-3): n in [1..45]]; // Vincenzo Librandi, Apr 14 2015
-
A000792 := proc(n)
m := floor(n/3) ;
if n mod 3 = 0 then
3^m ;
elif n mod 3 = 1 then
4*3^(m-1) ;
else
2*3^m ;
end if;
floor(%) ;
end proc: # R. J. Mathar, May 26 2013
-
a[1] = 1; a[n_] := 4* 3^(1/3 *(n - 1) - 1) /; (Mod[n, 3] == 1 && n > 1); a[n_] := 2*3^(1/3*(n - 2)) /; Mod[n, 3] == 2; a[n_] := 3^(n/3) /; Mod[n, 3] == 0; Table[a[n], {n, 0, 40}]
CoefficientList[Series[(1 + x + 2x^2 + x^4)/(1 - 3x^3), {x, 0, 50}], x] (* Harvey P. Dale, May 01 2011 *)
f[n_] := Max[ Times @@@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]]; f[1] = 1; Array[f, 43, 0] (* Robert G. Wilson v, Jul 31 2012 *)
a[ n_] := If[ n < 2, Boole[ n > -1], 2^Mod[-n, 3] 3^(Quotient[ n - 1, 3] + Mod[n - 1, 3] - 1)]; (* Michael Somos, Jan 23 2014 *)
Join[{1, 1}, LinearRecurrence[{0, 0, 3}, {2, 3, 4}, 50]] (* Jean-François Alcover, Jan 08 2019 *)
Join[{1,1},NestList[#+Divisors[#][[-2]]&,2,41]] (* James C. McMahon, Aug 09 2024 *)
-
{a(n) = floor( 3^(n - 4 - (n - 4) \ 3 * 2) * 2^( -n%3))}; /* Michael Somos, Jul 23 2002 */
-
lista(nn) = {print1("1, 1, "); print1(a=2, ", "); for (n=1, nn, a += a/divisors(a)[2]; print1(a, ", "););} \\ Michel Marcus, Apr 14 2015
-
A000792(n)=if(n>1,3^((n-2)\3)*(2+(n-2)%3),1) \\ M. F. Hasler, Jan 19 2019
More terms and better description from Therese Biedl (biedl(AT)uwaterloo.ca), Jan 19 2000
A108605
Semiprimes with prime sum of factors: twice the lesser of the twin prime pairs.
Original entry on oeis.org
6, 10, 22, 34, 58, 82, 118, 142, 202, 214, 274, 298, 358, 382, 394, 454, 478, 538, 562, 622, 694, 838, 862, 922, 1042, 1138, 1198, 1234, 1282, 1318, 1618, 1642, 1654, 1714, 1762, 2038, 2062, 2098, 2122, 2182, 2302, 2458, 2554, 2578, 2602, 2638, 2854, 2902
Offset: 1
58=2*29 and 2+29 is prime.
-
Select[Range[2, 3000, 2], !IntegerQ[Sqrt[ # ]]&&Plus@@(Transpose[FactorInteger[ # ]])[[2]]==2&&PrimeQ[Plus@@(Transpose[FactorInteger[ # ]])[[1]]]&]
Select[Range[2,3000,2],PrimeOmega[#]==PrimeNu[#]==2&&PrimeQ[Total[ FactorInteger[ #][[;;,1]]]]&] (* Harvey P. Dale, Apr 10 2023 *)
-
list(lim)=my(v=List(),p=2); forprime(q=3,lim\2+1, if(q-p==2, listput(v,2*p)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017
Changed division by 2 to multiplication by 2 in formula related to
A001359. -
R. J. Mathar, Nov 28 2008
A295185
a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3.
Original entry on oeis.org
6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669
Offset: 3
5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
Cf.
A000040,
A056240,
A288814,
A292081,
A289993,
A288313,
A297150,
A298615,
A298252,
A297925,
A298366,
A288189.
-
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
-
a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017
A259730
Primes p such that both 2*p - 3 and 3*p - 2 are prime.
Original entry on oeis.org
3, 5, 7, 11, 13, 23, 37, 43, 53, 67, 71, 113, 127, 137, 167, 181, 191, 193, 211, 251, 263, 331, 347, 373, 431, 433, 443, 461, 487, 587, 727, 751, 757, 907, 991, 1021, 1091, 1103, 1171, 1187, 1213, 1231, 1297, 1367, 1453, 1483, 1597, 1637, 1663, 1667, 1733
Offset: 1
-
import Data.List.Ordered (isect)
a259730 n = a259730_list !! (n-1)
a259730_list = a063908_list `isect` a088878_list
-
Select[Prime@ Range@ 270, Times @@ Boole@ Map[PrimeQ, {2 # - 3, 3 # - 2}] > 0 &] (* Michael De Vlieger, Jul 22 2017 *)
Select[Prime[Range[300]],AllTrue[{2#-3,3#-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 08 2020 *)
-
lista(nn) = forprime(p=3, nn, if(isprime(2*p-3) && isprime(3*p-2), print1(p, ", "))); \\ Altug Alkan, Jul 22 2017
A073046
Write 2*n = p+q (p,q prime), p*q minimal; then a(n) = p*q.
Original entry on oeis.org
4, 9, 15, 21, 35, 33, 39, 65, 51, 57, 95, 69, 115, 161, 87, 93, 155, 217, 111, 185, 123, 129, 215, 141, 235, 329, 159, 265, 371, 177, 183, 305, 427, 201, 335, 213, 219, 365, 511, 237, 395, 249, 415, 581, 267, 445, 623, 1501, 291, 485, 303, 309, 515, 321, 327
Offset: 2
n=13: 2n=26; 26 = 23 + 3 = 19 + 7 = 13 + 13; 23*3 = minimal => p*q = 23*3 = 69.
-
a073046 n = head $ dropWhile (== 0) $
zipWith (*) prims $ map (a061397 . (2*n -)) prims
where prims = takeWhile (<= n) a000040_list
-- Reinhard Zumkeller, Aug 28 2011
-
Array[Block[{p = 2, q}, While[! PrimeQ@ Set[q, 2 # - p], p = NextPrime[p]]; p q] &, 55, 2] (* Michael De Vlieger, Aug 02 2020 *)
Showing 1-10 of 16 results.
Comments