cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 206 results. Next

A062457 a(n) = prime(n)^n.

Original entry on oeis.org

2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
Offset: 1

Views

Author

Labos Elemer, Jul 09 2001

Keywords

Comments

Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 14 2018
Main diagonal of A182944. - Omar E. Pol, Sep 12 2018
Second diagonal of A319075. - Omar E. Pol, Sep 13 2018

Crossrefs

Programs

Formula

a(n) = A062006(n) - 1. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A093358.
Sum_{n>=1} (-1)^(n+1)/a(n) = A201614. (End)

A302478 Products of prime numbers of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01:  {}
02:  {{}}
03:  {{1}}
04:  {{},{}}
05:  {{2}}
06:  {{},{1}}
08:  {{},{},{}}
09:  {{1},{1}}
10:  {{},{2}}
11:  {{3}}
12:  {{},{},{1}}
13:  {{1,2}}
15:  {{1},{2}}
16:  {{},{},{},{}}
17:  {{4}}
18:  {{},{1},{1}}
20:  {{},{},{2}}
22:  {{},{3}}
24:  {{},{},{},{1}}
25:  {{2},{2}}
26:  {{},{1,2}}
27:  {{1},{1},{1}}
29:  {{1,3}}
30:  {{},{1},{2}}
31:  {{5}}
32:  {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    ok(n)={!#select(p->!issquarefree(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

A303386 Number of aperiodic factorizations of n > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 2, 4, 1, 5, 1, 6, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 7, 1, 5, 1, 7, 5
Offset: 2

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.

Examples

			The a(36) = 7 aperiodic factorizations are (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), and (36). Missing from this list are (2*2*3*3) and (6*6).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],GCD@@Length/@Split[#]===1&]],{n,2,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A303386(n) = if(1==n,n,my(r); sumdiv(A052409(n),d, ispower(n,d,&r); moebius(d)*A001055(r))); \\ Antti Karttunen, Sep 25 2018

Formula

a(n) = Sum_{d|A052409(n)} mu(d) * A001055(n^(1/d)), where mu = A008683.

Extensions

More terms from Antti Karttunen, Sep 25 2018

A304714 Number of connected strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 5, 2, 5, 5, 6, 5, 10, 6, 12, 12, 13, 14, 21, 17, 23, 26, 30, 31, 46, 38, 51, 55, 61, 70, 87, 85, 102, 116, 128, 138, 171, 169, 204, 225, 245, 272, 319, 334, 383, 429, 464, 515, 593, 629, 715, 790, 861, 950, 1082
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(19) = 6 strict integer partitions are (19), (9,6,4), (10,5,4), (10,6,3), (12,4,3), (8,6,3,2). Taking the normalized prime factors of each part (see A112798, A302242), we have the following connected multiset multisystems.
       (19): {{8}}
    (9,6,4): {{2,2},{1,2},{1,1}}
   (10,5,4): {{1,3},{3},{1,1}}
   (10,6,3): {{1,3},{1,2},{2}}
   (12,4,3): {{1,1,2},{1,1},{2}}
  (8,6,3,2): {{1,1,1},{1,2},{2},{1}}
		

Crossrefs

The Heinz numbers of these partitions are given by A328513.

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&]],{n,60}]

A257994 Number of prime parts in the partition having Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 2, 0, 1, 1, 1, 0, 1, 2, 0, 3, 0, 0, 2, 1, 0, 2, 1, 1, 2, 0, 0, 1, 1, 1, 1, 0, 1, 3, 0, 0, 1, 0, 2, 2, 0, 0, 3, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 3, 0, 1, 1, 0, 1, 4, 1, 1, 1, 2, 0, 1, 1, 0, 3
Offset: 1

Views

Author

Emeric Deutsch, May 20 2015

Keywords

Comments

We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
The number of nonprime parts is given by A330944, so A001222(n) = a(n) + A330944(n). - Gus Wiseman, Jan 17 2020

Examples

			a(30) = 2 because the partition with Heinz number 30 = 2*3*5 is [1,2,3], having 2 prime parts.
		

References

  • George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.

Crossrefs

Positions of positive terms are A331386.
Primes of prime index are A006450.
Products of primes of prime index are A076610.
The number of nonprime prime indices is A330944.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, ct, s: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for s to nops(B(n)) do if isprime(B(n)[s]) = true then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 130);
  • Mathematica
    B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[  m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
    a[n_] := Module[{ct, s}, ct = 0; For[s = 1, s <= Length[B[n]], s++, If[ PrimeQ[B[n][[s]]], ct++]]; ct];
    Table[a[n], {n, 1, 130}] (* Jean-François Alcover, Apr 25 2017, translated from Maple *)
    Table[Total[Cases[FactorInteger[n],{p_,k_}/;PrimeQ[PrimePi[p]]:>k]],{n,30}] (* Gus Wiseman, Jan 17 2020 *)
  • PARI
    a(n) = my(f = factor(n)); sum(i=1, #f~, if(isprime(primepi(f[i, 1])), f[i, 2], 0)); \\ Amiram Eldar, Nov 03 2023

Formula

Additive with a(p^e) = e if primepi(p) is prime, and 0 otherwise. - Amiram Eldar, Nov 03 2023

A303431 Aperiodic tree numbers. Matula-Goebel numbers of aperiodic rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 39, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 65, 66, 71, 72, 74, 75, 78, 79, 80, 82, 87, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 111, 113, 116, 117, 120, 122
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

A positive integer is an aperiodic tree number iff either it is equal to 1 or it belongs to A007916 (numbers that are not perfect powers, or numbers whose prime multiplicities are relatively prime) and all of its prime indices are also aperiodic tree numbers, where a prime index of n is a number m such that prime(m) divides n.

Examples

			Sequence of aperiodic rooted trees begins:
01 o
02 (o)
03 ((o))
05 (((o)))
06 (o(o))
10 (o((o)))
11 ((((o))))
12 (oo(o))
13 ((o(o)))
15 ((o)((o)))
18 (o(o)(o))
20 (oo((o)))
22 (o(((o))))
24 (ooo(o))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
		

Crossrefs

Programs

  • Mathematica
    zapQ[1]:=True;zapQ[n_]:=And[GCD@@FactorInteger[n][[All,2]]===1,And@@zapQ/@PrimePi/@FactorInteger[n][[All,1]]];
    Select[Range[100],zapQ]

A320456 Numbers whose multiset multisystem spans an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  12: {{},{},{1}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  27: {{1},{1},{1}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[100],normQ[primeMS/@primeMS[#]]&]

A326534 MM-numbers of multiset partitions where every part has the same sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 191
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A298538 in lacking 187.
These are numbers where each prime index has the same sum of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same sum, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
  35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@primeMS/@primeMS[#]&]

A302494 Products of distinct primes of squarefree index.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 39, 41, 43, 47, 51, 55, 58, 59, 62, 65, 66, 67, 73, 78, 79, 82, 83, 85, 86, 87, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 129, 130, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
39: {{1},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    is(n) = if(bigomega(n)!=omega(n), return(0), my(f=factor(n)[, 1]~); for(k=1, #f, if(!issquarefree(primepi(f[k])) && primepi(f[k])!=1, return(0)))); 1 \\ Felix Fröhlich, Apr 10 2018

A303975 Number of distinct prime factors in the product of prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
First appearance of n is A062447(n - 1).

Examples

			9193 has prime indices {10, 66} with product 660, which has 4 distinct prime factors {2, 3, 5, 11}, so a(9193) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[If[n==1,1,Times@@PrimePi/@First/@FactorInteger[n]]],{n,100}]
  • PARI
    a(n) = my(v = factor(n)[, 1]); omega(prod(i = 1, #v, primepi(v[i]))) \\ David A. Corneth, Dec 29 2018

Formula

a(n) = A001221(A156061(n)). - Michel Marcus, Jan 01 2019
Previous Showing 11-20 of 206 results. Next