cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 6, 8, 12, 16, 21, 28, 37, 49, 64, 80, 104, 135, 169, 216, 268, 341, 420, 527, 654, 809, 991, 1218, 1488, 1828, 2213, 2687, 3262, 3934, 4754, 5702, 6849, 8200, 9819, 11693, 13937, 16562, 19659, 23262, 27577, 32493, 38341, 45112, 53059, 62265
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a loop-graphical partition (A339656, A339658).

Examples

			The a(2) = 1 through a(10) = 16 partitions:
  (11)  (21)  (22)  (32)    (33)    (43)    (44)    (54)      (55)
              (31)  (41)    (42)    (52)    (53)    (63)      (64)
                    (2111)  (51)    (61)    (62)    (72)      (73)
                            (2211)  (2221)  (71)    (81)      (82)
                            (3111)  (3211)  (3221)  (3222)    (91)
                                    (4111)  (3311)  (3321)    (3322)
                                            (4211)  (4221)    (3331)
                                            (5111)  (4311)    (4222)
                                                    (5211)    (4321)
                                                    (6111)    (4411)
                                                    (222111)  (5221)
                                                    (321111)  (5311)
                                                              (6211)
                                                              (7111)
                                                              (322111)
                                                              (421111)
For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10).
		

Crossrefs

A320912 gives the Heinz numbers of these partitions.
A338915 counts the complement in even-length partitions.
A339563 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}]

Formula

A027187(n) = a(n) + A338915(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339559 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 3, 7, 6, 14, 14, 23, 27, 41, 47, 70, 84, 114, 141, 190, 225, 303, 370, 475, 578, 738, 890, 1131, 1368, 1698, 2058, 2549, 3048, 3759, 4505, 5495, 6574, 7966, 9483, 11450, 13606, 16307, 19351, 23116, 27297, 32470, 38293, 45346, 53342, 62939
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a non-graphical partition.

Examples

			The a(2) = 1 through a(10) = 14 partitions (empty column indicated by dot):
  11   .   22     2111   33       2221     44         3222       55
           1111          2211     4111     2222       6111       3322
                         3111     211111   3311       222111     3331
                         111111            5111       321111     4222
                                           221111     411111     4411
                                           311111     21111111   7111
                                           11111111              222211
                                                                 322111
                                                                 331111
                                                                 421111
                                                                 511111
                                                                 22111111
                                                                 31111111
                                                                 1111111111
For example, the partition y = (4,4,3,3,2,2,1,1,1,1) can be partitioned into a multiset of edges in just three ways:
  {{1,2},{1,2},{1,3},{1,4},{3,4}}
  {{1,2},{1,3},{1,3},{1,4},{2,4}}
  {{1,2},{1,3},{1,4},{1,4},{2,3}}
None of these are strict, so y is counted under a(22).
		

Crossrefs

A320894 ranks these partitions (using Heinz numbers).
A338915 allows equal pairs (x,x).
A339560 counts the complement in even-length partitions.
A339564 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&strs[Times@@Prime/@#]=={}&]],{n,0,15}]

Formula

A027187(n) = a(n) + A339560(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2018

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. In the even case, these factorizations have A001222(n)/2 factors. - Gus Wiseman, Dec 31 2020
Records 1, 2, 3, 4, 5, 9, 13, 15, 17, ... occur at 1, 60, 210, 840, 1260, 4620, 27720, 30030, 69300, ...

Examples

			a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480:
  4*15   6*35    4*6*35    4*9*35    4*15*77    4*6*15*35    4*6*10*77
  6*10   10*21   4*10*21   4*15*21   4*21*55    4*6*21*25    4*6*14*55
         14*15   4*14*15   6*10*21   4*33*35    4*9*10*35    4*6*22*35
                 6*10*14   6*14*15   6*10*77    4*9*14*25    4*10*14*33
                           9*10*14   6*14*55    4*10*15*21   4*10*21*22
                                     6*22*35    6*10*14*15   4*14*15*22
                                     10*14*33                6*10*14*22
                                     10*21*22
                                     14*15*22
(End)
		

Crossrefs

Unlabeled multiset partitions of this type are counted by A007717.
The version for partitions is A112020, or A101048 without distinctness.
The non-strict version is A320655.
Positions of zeros include A320892.
Positions of nonzero terms are A320912.
The case of squarefree factors is A339661, or A320656 without distinctness.
Allowing prime factors gives A339839, or A320732 without distinctness.
A322661 counts loop-graphs, ranked by A320461.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A037143 lists primes and semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A339846 counts even-length factorizations, with ordered version A174725.

Programs

Formula

a(n) = Sum_{d|n} (-1)^A001222(d) * A339839(n/d). - Gus Wiseman, Dec 31 2020

A339742 Number of factorizations of n into distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 3, 2, 2, 2, 0, 1, 3, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 4, 1, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes.

Examples

			The a(n) factorizations for n = 6, 30, 60, 210, 420 are respectively 2, 4, 3, 10, 9:
  (6)    (5*6)    (6*10)    (6*35)     (2*6*35)
  (2*3)  (2*15)   (2*5*6)   (10*21)    (5*6*14)
         (3*10)   (2*3*10)  (14*15)    (6*7*10)
         (2*3*5)            (5*6*7)    (2*10*21)
                            (2*3*35)   (2*14*15)
                            (2*5*21)   (2*5*6*7)
                            (2*7*15)   (3*10*14)
                            (3*5*14)   (2*3*5*14)
                            (3*7*10)   (2*3*7*10)
                            (2*3*5*7)
		

Crossrefs

Dirichlet convolution of A008966 with A339661.
A008966 allows only primes.
A339661 does not allow primes, only squarefree semiprimes.
A339740 lists the positions of zeros.
A339741 lists the positions of positive terms.
A339839 allows nonsquarefree semiprimes.
A339887 is the non-strict version.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339840 cannot be factored into distinct primes or semiprimes.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050320 into squarefree numbers.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339742 [this sequence] into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A058696 counts all partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A339656 counts loop-graphical partitions (A339658).
-
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 has no additional conditions (A028260).
- A338914/A339562 can be partitioned into edges (A320911).
- A338916/A339563 can be partitioned into distinct pairs (A320912).
- A339559/A339564 cannot be partitioned into distinct edges (A320894).
- A339560/A339619 can be partitioned into distinct edges (A339561).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqps[n]],{n,100}]
  • PARI
    A353471(n) = (numdiv(n)==2*omega(n));
    A339742(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA353471(d), s += A339742(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022

Formula

a(n) = Sum_{d|n squarefree} A339661(n/d).

Extensions

More terms from Antti Karttunen, May 02 2022

A339841 Numbers that can be factored into distinct primes or semiprimes in exactly one way.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 48, 49, 53, 59, 61, 67, 71, 73, 79, 80, 83, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 131, 137, 139, 144, 149, 151, 157, 162, 163, 167, 169, 173, 176, 179, 181, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their one factorization begins:
     1 =        29 = 29        80 = 2*4*10
     2 = 2      31 = 31        83 = 83
     3 = 3      37 = 37        89 = 89
     4 = 4      41 = 41        97 = 97
     5 = 5      43 = 43       101 = 101
     7 = 7      47 = 47       103 = 103
     8 = 2*4    48 = 2*4*6    107 = 107
     9 = 9      49 = 49       109 = 109
    11 = 11     53 = 53       112 = 2*4*14
    13 = 13     59 = 59       113 = 113
    17 = 17     61 = 61       121 = 121
    19 = 19     67 = 67       125 = 5*25
    23 = 23     71 = 71       127 = 127
    25 = 25     73 = 73       131 = 131
    27 = 3*9    79 = 79       137 = 137
For example, we have 360 = 2*3*6*10, so 360 is in the sequence. But 360 is absent from A293511, because we also have 360 = 2*6*30.
		

Crossrefs

See link for additional cross-references.
These are the positions of ones in A339839.
The version for no factorizations is A339840.
The version for at least one factorization is A339889.
A001055 counts factorizations.
A001358 lists semiprimes, with squarefree case A006881.
A037143 lists primes and semiprimes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A338915 counts partitions that cannot be partitioned into distinct pairs.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Length[Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]]==1&]

A339839 Number of factorizations of n into distinct primes or semiprimes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 0, 2, 4, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 4, 1, 1, 0, 2, 1, 5, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 2, 0, 1, 2, 2, 2, 1, 4, 1, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The a(n) factorizations for n = 6, 16, 30, 60, 180, 210, 240, 420:
  6    5*6    4*15    4*5*9    6*35     4*6*10    2*6*35
  2*3  2*15   6*10    2*6*15   10*21    2*4*5*6   3*4*35
       3*10   2*5*6   2*9*10   14*15    2*3*4*10  4*5*21
       2*3*5  3*4*5   3*4*15   5*6*7              4*7*15
              2*3*10  3*6*10   2*3*35             5*6*14
                      2*3*5*6  2*5*21             6*7*10
                               2*7*15             2*10*21
                               3*5*14             2*14*15
                               3*7*10             2*5*6*7
                               2*3*5*7            3*10*14
                                                  3*4*5*7
                                                  2*3*5*14
                                                  2*3*7*10
		

Crossrefs

A008966 allows only primes.
A320732 is the non-strict version.
A339742 does not allow squares of primes.
A339840 lists the positions of zeros.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A322353 into distinct semiprimes.
- A339839 [this sequence] into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A339656 counts loop-graphical partitions (A339658).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]],{n,100}]
  • PARI
    A339839(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA339839(n/d, d))); (s)); \\ Antti Karttunen, Feb 10 2023

Formula

a(n) = Sum_{d|n squarefree} A322353(n/d).

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 10 2023

A339740 Non-products of distinct primes or squarefree semiprimes.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

Differs from A293243 and A212164 in having 1080, with prime indices {1,1,1,2,2,2,3} and factorization into distinct squarefree numbers 2*3*6*30.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}             80: {1,1,1,1,3}
      8: {1,1,1}           81: {2,2,2,2}
      9: {2,2}             88: {1,1,1,5}
     16: {1,1,1,1}         96: {1,1,1,1,1,2}
     24: {1,1,1,2}        104: {1,1,1,6}
     25: {3,3}            108: {1,1,2,2,2}
     27: {2,2,2}          112: {1,1,1,1,4}
     32: {1,1,1,1,1}      121: {5,5}
     40: {1,1,1,3}        125: {3,3,3}
     48: {1,1,1,1,2}      128: {1,1,1,1,1,1,1}
     49: {4,4}            135: {2,2,2,3}
     54: {1,2,2,2}        136: {1,1,1,7}
     56: {1,1,1,4}        144: {1,1,1,1,2,2}
     64: {1,1,1,1,1,1}    152: {1,1,1,8}
     72: {1,1,1,2,2}      160: {1,1,1,1,1,3}
For example, a complete list of strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72); but since none of these consists of only primes or squarefree semiprimes, 72 is in the sequence.
		

Crossrefs

A013929 allows only primes.
A320894 does not allow primes (but omega is assumed even).
A339741 is the complement.
A339742 has zeros at these positions.
A339840 allows squares of primes.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339661 into distinct squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339617 counts non-graphical partitions of 2n (A339618).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 counts all of even length (A028260).
- A096373/A339737 cannot be partitioned into strict pairs (A320891).
- A338915/A339662 cannot be partitioned into distinct pairs (A320892).
- A339559/A339564 cannot be partitioned into distinct strict pairs (A320894).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqps[#]=={}&]

A339840 Numbers that cannot be factored into distinct primes or semiprimes.

Original entry on oeis.org

16, 32, 64, 81, 96, 128, 160, 192, 224, 243, 256, 288, 320, 352, 384, 416, 448, 486, 512, 544, 576, 608, 625, 640, 704, 729, 736, 768, 800, 832, 864, 896, 928, 960, 972, 992, 1024, 1088, 1152, 1184, 1215, 1216, 1280, 1312, 1344, 1376, 1408, 1458, 1472, 1504
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their prime indices begins:
    16: {1,1,1,1}
    32: {1,1,1,1,1}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    96: {1,1,1,1,1,2}
   128: {1,1,1,1,1,1,1}
   160: {1,1,1,1,1,3}
   192: {1,1,1,1,1,1,2}
   224: {1,1,1,1,1,4}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   288: {1,1,1,1,1,2,2}
   320: {1,1,1,1,1,1,3}
   352: {1,1,1,1,1,5}
   384: {1,1,1,1,1,1,1,2}
   416: {1,1,1,1,1,6}
   448: {1,1,1,1,1,1,4}
   486: {1,2,2,2,2,2}
For example, a complete list of all factorizations of 192 into primes or semiprimes is:
  (2*2*2*2*2*2*3)
  (2*2*2*2*2*6)
  (2*2*2*2*3*4)
  (2*2*2*4*6)
  (2*2*3*4*4)
  (2*4*4*6)
  (3*4*4*4)
Since none of these is strict, 192 is in the sequence.
		

Crossrefs

Allowing only primes gives A013929.
Removing all squares of primes gives A339740.
These are the positions of zeros in A339839.
The complement is A339889.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A338915 cannot be partitioned into distinct pairs (A320892).
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339661 into distinct squarefree semiprimes.
- A339742 into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n, ranked by A339618.
- A339655 counts non-loop-graphical partitions of 2n (A339657).

Programs

  • Maple
    filter:= proc(n)
      g(map(t -> t[2], ifactors(n)[2]))
    end proc;
    g:= proc(L) option remember; local x,i,j,t,s,Cons,R;
      if nops(L) = 1 then return L[1] > 3
      elif nops(L) = 2 then return max(L) > 4
      fi;
      Cons:= {seq(x[i] + x[i,i] + add(x[j,i], j=1..i-1)
         + add(x[i,j],j=i+1..nops(L)) = L[i], i=1..nops(L))};
      R:= traperror(Optimization:-LPSolve(0,Cons, assume=binary));
      type(R,string)
    end proc:
    select(filter, [$2..2000]); # Robert Israel, Dec 28 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]=={}&]

A339843 Number of distinct sorted degree sequences among all n-vertex half-loop-graphs without isolated vertices.

Original entry on oeis.org

1, 1, 3, 9, 29, 97, 336, 1188, 4275, 15579, 57358, 212908, 795657, 2990221, 11291665, 42814783, 162920417, 621885767, 2380348729
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2020

Keywords

Comments

In the covering case, these degree sequences, sorted in decreasing order, are the same thing as half-loop-graphical partitions (A321729). An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex.
The following are equivalent characteristics for any positive integer n:
(1) the prime indices of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops or edges;
(2) n can be factored into distinct primes or squarefree semiprimes;
(3) the prime signature of n is half-loop-graphical.

Examples

			The a(0) = 1 through a(3) = 9 sorted degree sequences:
  ()  (1)  (1,1)  (1,1,1)
           (2,1)  (2,1,1)
           (2,2)  (2,2,1)
                  (2,2,2)
                  (3,1,1)
                  (3,2,1)
                  (3,2,2)
                  (3,3,2)
                  (3,3,3)
For example, the half-loop-graphs
  {{1},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(3).
		

Crossrefs

See link for additional cross references.
The version for simple graphs is A004251, covering: A095268.
The non-covering version (it allows isolated vertices) is A029889.
The same partitions counted by sum are conjectured to be A321729.
These graphs are counted by A006125 shifted left, covering: A322661.
The version for full loops is A339844, covering: A339845.
These graphs are ranked by A340018 and A340019.
A006125 counts labeled simple graphs, covering: A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&]]],{n,0,5}]

Formula

a(n) = A029889(n) - A029889(n-1) for n > 0. - Andrew Howroyd, Jan 10 2024

Extensions

a(7)-a(18) added (using A029889) by Andrew Howroyd, Jan 10 2024

A339887 Number of factorizations of n into primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 1, 5, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
Conjecture: also the number of semistandard Young tableaux whose entries are the prime indices of n (A323437).
Is this a duplicate of A323437? - R. J. Mathar, Jan 05 2021

Examples

			The a(n) factorizations for n = 36, 60, 180, 360, 420, 840:
  6*6       6*10      5*6*6       6*6*10        2*6*35      6*10*14
  2*3*6     2*5*6     2*6*15      2*5*6*6       5*6*14      2*2*6*35
  2*2*3*3   2*2*15    3*6*10      2*2*6*15      6*7*10      2*5*6*14
            2*3*10    2*3*5*6     2*3*6*10      2*10*21     2*6*7*10
            2*2*3*5   2*2*3*15    2*2*3*5*6     2*14*15     2*2*10*21
                      2*3*3*10    2*2*2*3*15    2*5*6*7     2*2*14*15
                      2*2*3*3*5   2*2*3*3*10    3*10*14     2*2*5*6*7
                                  2*2*2*3*3*5   2*2*3*35    2*3*10*14
                                                2*2*5*21    2*2*2*3*35
                                                2*2*7*15    2*2*2*5*21
                                                2*3*5*14    2*2*2*7*15
                                                2*3*7*10    2*2*3*5*14
                                                2*2*3*5*7   2*2*3*7*10
                                                            2*2*2*3*5*7
		

Crossrefs

See link for additional cross-references.
Only allowing only primes gives A008966.
Not allowing primes gives A320656.
Unlabeled multiset partitions of this type are counted by A320663/A339888.
Allowing squares of primes gives A320732.
The strict version is A339742.
A001055 counts factorizations.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.

Programs

  • Mathematica
    sqpe[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqpe[n/d],Min@@#>=d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqpe[n]],{n,100}]

Formula

a(A002110(n)) = A000085(n), and in general if n is a product of k distinct primes, a(n) = A000085(k).
a(n) = Sum_{d|n} A320656(n/d), so A320656 is the Moebius transform of this sequence.
Previous Showing 11-20 of 24 results. Next