cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A368984 Number of graphs with loops (symmetric relations) on n unlabeled vertices in which each connected component has an equal number of vertices and edges.

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 75, 191, 504, 1339, 3610, 9800, 26881, 74118, 205706, 573514, 1606107, 4513830, 12727944, 35989960, 102026638, 289877828, 825273050, 2353794251, 6724468631, 19239746730, 55123700591, 158133959239, 454168562921, 1305796834570, 3758088009136
Offset: 0

Views

Author

Andrew Howroyd, Jan 11 2024

Keywords

Comments

The graphs considered here can have loops but not parallel edges.
Also the number of unlabeled loop-graphs with n edges and n vertices such that it is possible to choose a different vertex from each edge. - Gus Wiseman, Jan 25 2024

Examples

			Representatives of the a(3) = 5 graphs are:
   {{1,2}, {1,3}, {2,3}},
   {{1}, {1,2}, {1,3}},
   {{1}, {1,2}, {2,3}},
   {{1}, {2}, {2,3}},
   {{1}, {2}, {3}}.
The graph with 4 vertices and edges {{1}, {2}, {1,2}, {3,4}} is included by A368599 but not by this sequence.
		

Crossrefs

The case of a unique choice is A000081.
Without loops we have A137917, labeled A137916.
The labeled version appears to be A333331.
Without the choice condition we have A368598, covering A368599.
The complement is counted by A368835, labeled A368596 (covering A368730).
Row sums of A368926, labeled A368924.
The connected case is A368983.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, connected A001187, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{1,2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)

Formula

Euler transform of A368983.

A369142 Number of labeled loop-graphs covering {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 22, 616, 26084, 1885323, 253923163, 66619551326, 34575180977552, 35680008747431929, 73392583275070667841, 301348381377662031986734, 2471956814761854578316988092, 40530184362443276558060719358471, 1328619783326799871747200601484790193
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

Also labeled loop-graphs covering n vertices with at least one connected component containing more edges than vertices.

Examples

			The a(0) = 0 through a(3) = 22 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{3},{1,3}}
                         {{1},{2},{3},{2,3}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,2},{2,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3}}
                         {{1},{3},{1,2},{2,3}}
                         {{1},{3},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3}}
                         {{2},{3},{1,2},{2,3}}
                         {{2},{3},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{2},{1,2},{1,3},{2,3}}
                         {{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{3},{1,2},{2,3}}
                         {{1},{2},{3},{1,3},{2,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

The version for a unique choice is A000272, unlabeled A000055.
Without the choice condition we have A006125, unlabeled A000088.
The case without loops is A367868, covering case of A367867.
For exactly n edges we have A368730, covering case of A368596.
The complement is counted by A369140, covering case of A368927.
This is the covering case of A369141.
For n edges and no loops we have A369144, covering A369143.
The unlabeled version is A369147, covering case of A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable graphs, unlabeled A005703.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, connected A062740, unlabeled A322700.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

Inverse binomial transform of A369141.
a(n) = A322661(n) - A369140(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A372176 Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices with exactly 2k directed cycles of length > 2.

Original entry on oeis.org

1, 1, 2, 7, 1, 38, 19, 0, 6, 0, 0, 0, 1, 291, 317, 15, 220, 0, 0, 70, 55, 0, 0, 0, 0, 30, 15, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2024

Keywords

Comments

A directed cycle in a simple (undirected) graph is a sequence of distinct vertices, up to rotation, such that there are edges between all consecutive elements, including the last and the first.

Examples

			Triangle begins (zeros shown as dots):
   1
   1
   2
   7 1
   38 19 . 6 ... 1
   291 317 15 220 .. 70 55 .... 30 15 ........ 10 ............... 1
The T(4,3) = 6 graphs:
  12,13,14,23,24
  12,13,14,23,34
  12,13,14,24,34
  12,13,23,24,34
  12,14,23,24,34
  13,14,23,24,34
		

Crossrefs

Column k = 0 is A001858 (unlabeled A005195), covering A105784.
Row lengths are A002807 + 1.
Row sums are A006125, unlabeled A000088.
Counting edges instead of cycles gives A084546 (covering A054548), unlabeled A008406 (covering A370167).
Counting triangles instead of cycles gives A372170 (covering A372167), unlabeled A263340 (covering A372173).
The covering case is A372175.
Column k = 1 is A372193 (covering A372195), unlabeled A236570.
A006129 counts graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}], And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&], {k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cyc[#]]==2k&]], {n,0,4}, {k,0,Length[cyc[Subsets[Range[n],{2}]]]/2}]

A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2018

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. In the even case, these factorizations have A001222(n)/2 factors. - Gus Wiseman, Dec 31 2020
Records 1, 2, 3, 4, 5, 9, 13, 15, 17, ... occur at 1, 60, 210, 840, 1260, 4620, 27720, 30030, 69300, ...

Examples

			a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480:
  4*15   6*35    4*6*35    4*9*35    4*15*77    4*6*15*35    4*6*10*77
  6*10   10*21   4*10*21   4*15*21   4*21*55    4*6*21*25    4*6*14*55
         14*15   4*14*15   6*10*21   4*33*35    4*9*10*35    4*6*22*35
                 6*10*14   6*14*15   6*10*77    4*9*14*25    4*10*14*33
                           9*10*14   6*14*55    4*10*15*21   4*10*21*22
                                     6*22*35    6*10*14*15   4*14*15*22
                                     10*14*33                6*10*14*22
                                     10*21*22
                                     14*15*22
(End)
		

Crossrefs

Unlabeled multiset partitions of this type are counted by A007717.
The version for partitions is A112020, or A101048 without distinctness.
The non-strict version is A320655.
Positions of zeros include A320892.
Positions of nonzero terms are A320912.
The case of squarefree factors is A339661, or A320656 without distinctness.
Allowing prime factors gives A339839, or A320732 without distinctness.
A322661 counts loop-graphs, ranked by A320461.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A037143 lists primes and semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A339846 counts even-length factorizations, with ordered version A174725.

Programs

Formula

a(n) = Sum_{d|n} (-1)^A001222(d) * A339839(n/d). - Gus Wiseman, Dec 31 2020

A368598 Number of non-isomorphic n-element sets of singletons or pairs of elements of {1..n}, or unlabeled loop-graphs with n edges and up to n vertices.

Original entry on oeis.org

1, 1, 2, 6, 17, 52, 173, 585, 2064, 7520, 28265, 109501, 437394, 1799843, 7629463, 33302834, 149633151, 691702799, 3287804961, 16058229900, 80533510224, 414384339438, 2185878202630, 11811050484851, 65318772618624, 369428031895444, 2135166786135671, 12601624505404858
Offset: 0

Views

Author

Gus Wiseman, Jan 05 2024

Keywords

Comments

It doesn't matter for this sequence whether we use loops such as {x,x} or half-loops such as {x}.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(4) = 17 set-systems:
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}        {{1},{2},{3},{4}}
             {{1},{1,2}}  {{1},{2},{1,2}}      {{1},{2},{3},{1,2}}
                          {{1},{2},{1,3}}      {{1},{2},{3},{1,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}    {{1},{2},{1,2},{3,4}}
                          {{1,2},{1,3},{2,3}}  {{1},{2},{1,3},{1,4}}
                                               {{1},{2},{1,3},{2,3}}
                                               {{1},{2},{1,3},{2,4}}
                                               {{1},{3},{1,2},{2,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,3}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{2},{1,2},{1,3},{1,4}}
                                               {{4},{1,2},{1,3},{2,3}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

For any number of edges of any size we have A000612, covering A055621.
For any number of edges we have A000666, A054921, A322700.
The labeled version is A014068.
Counting by weight gives A320663, or A339888 with loops {x,x}.
The covering case is A368599.
For edges of any size we have A368731, covering A368186.
Row sums of A368836.
A000085 counts set partitions into singletons or pairs.
A001515 counts length-n set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,2}],{n}]]],{n,0,5}]
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A070166. - Andrew Howroyd, Jan 09 2024

Formula

a(n) = A070166(n, n). - Andrew Howroyd, Jan 09 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 09 2024

A368835 Number of unlabeled n-edge loop-graphs with at most n vertices such that it is not possible to choose a different vertex from each edge.

Original entry on oeis.org

0, 0, 0, 1, 5, 23, 98, 394, 1560, 6181, 24655, 99701, 410513, 1725725, 7423757, 32729320, 148027044, 687188969, 3275077017, 16022239940, 80431483586, 414094461610, 2185052929580, 11808696690600, 65312048149993, 369408792148714, 2135111662435080, 12601466371445619
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2024

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 5 loop-graphs:
  {{1,1},{2,2},{3,3},{1,2}}
  {{1,1},{2,2},{1,2},{1,3}}
  {{1,1},{2,2},{1,2},{3,4}}
  {{1,1},{2,2},{1,3},{2,3}}
  {{1,1},{1,2},{1,3},{2,3}}
		

Crossrefs

The case of a unique choice is A000081, row sums of A106234.
The labeled version is A368596, covering A368730.
Without the choice condition we have A368598.
The complement is A368984, row sums of A368926.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,5}]

Formula

a(n) = A368598(n) - A368984(n). - Andrew Howroyd, Jan 14 2024

Extensions

a(8) onwards from Andrew Howroyd, Jan 14 2024

A369140 Number of labeled loop-graphs covering {1..n} such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 1, 4, 23, 193, 2133, 29410, 486602, 9395315, 207341153, 5147194204, 141939786588, 4304047703755, 142317774817901, 5095781837539766, 196403997108015332, 8106948166404074281, 356781439557643998591, 16675999433772328981216, 824952192369049982670686
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

These are covering loop-graphs where every connected component has a number of edges less than or equal to the number of vertices in that component. Also covering loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{2},{1,3}}
             {{1},{1,2}}  {{3},{1,2}}
             {{2},{1,2}}  {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

For a unique choice we have A000272, covering case of A088957.
Without the choice condition we have A322661, unlabeled A322700.
For exactly n edges we have A333331 (maybe), complement A368596.
The case without loops is A367869, covering case of A133686.
This is the covering case of A368927.
The complement is counted by A369142, covering case of A369141.
The unlabeled version is the first differences of A369145.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A367862 counts graphs with n vertices and n edges, covering A367863.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(-x + 3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024

Formula

Inverse binomial transform of A368927.
Exponential transform of A369197.
E.g.f.: exp(-x)*exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A369191 Number of labeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5686, 102084, 2162168, 52693975, 1450876804, 44509105965, 1504709144203, 55563209785167, 2224667253972242, 95984473918245388, 4439157388017620554, 219067678811211857307, 11489425098298623161164, 638159082104453330569185
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A054548.

Examples

			The a(0) = 1 through a(3) = 4 graphs:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A053530.
The connected case is A129271, unlabeled version A005703.
The case of equality is A367863, covering case of A367862.
This is the covering case of A369192, or A369193 for covered vertices.
The version for loop-graphs is A369194.
The unlabeled version is A370316.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A057500 counts connected graphs with n vertices and n edges.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369193.

A095268 Number of distinct degree sequences among all n-vertex graphs with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 2, 7, 20, 71, 240, 871, 3148, 11655, 43332, 162769, 614198, 2330537, 8875768, 33924859, 130038230, 499753855, 1924912894, 7429160296, 28723877732, 111236423288, 431403470222, 1675316535350, 6513837679610, 25354842100894, 98794053269694, 385312558571890, 1504105116253904, 5876236938019298, 22974847399695092
Offset: 0

Views

Author

Eric W. Weisstein, May 31 2004

Keywords

Comments

A002494 is the number of graphs on n nodes with no isolated points and A095268 is the number of these graphs having distinct degree sequences.
Now that more terms have been computed, we can see that this is not the self-convolution of any integer sequence. - Paul D. Hanna, Aug 18 2006
Is it true that a(n+1)/a(n) tends to 4? Is there a heuristic argument why this might be true? - Gordon F. Royle, Aug 29 2006
Previous values a(30) = 5876236938019300 from Lorand Lucz, Jul 07 2013 and a(31) = 22974847474172100 from Lorand Lucz, Sep 03 2013 are wrong. New values a(30) and a(31) independently computed Kai Wang and Axel Kohnert. - Vaclav Kotesovec, Apr 15 2016
In the article by A. Iványi, G. Gombos, L. Lucz, T. Matuszka: "Parallel enumeration of degree sequences of simple graphs II" is in the tables on pages 258 and 261 a wrong value a(31) = 22974847474172100, but in the abstract another wrong value a(31) = 22974847474172374. - Vaclav Kotesovec, Apr 15 2016
The asymptotic formula given below confirms that a(n+1)/a(n) tends to 4. - Tom Johnston, Jan 18 2023

Examples

			a(4) = 7 because a 4-vertex graph with no isolated vertices can have degree sequence 1111, 2211, 2222, 3111, 3221, 3322 or 3333.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 7 sorted degree sequences (empty column indicated by dot):
  ()  .  (1,1)  (2,1,1)  (1,1,1,1)
                (2,2,2)  (2,2,1,1)
                         (2,2,2,2)
                         (3,1,1,1)
                         (3,2,2,1)
                         (3,3,2,2)
                         (3,3,3,3)
For example, the complete graph K_4 has degrees y = (3,3,3,3), so y is counted under a(4). On the other hand, the only half-loop-graphs (up to isomorphism) with degrees y = (4,2,2,1) are: {(1),(1,2),(1,3),(1,4),(2,3)} and {(1),(2),(3),(1,2),(1,3),(1,4)}; and since neither of these is a graph (due to having half-loops), y is not counted under a(4).
(End)
		

Crossrefs

Cf. A002494, A004250, A007721 (analog for connected graphs), A271831.
Counting the same partitions by sum gives A000569.
Allowing isolated nodes gives A004251.
The version with half-loops is A029889, with covering case A339843.
Covering simple graphs are ranked by A309356 and A320458.
Graphical partitions are ranked by A320922.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A339659 is a triangle counting graphical partitions.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

a(n) ~ c * 4^n / n^(3/4) for some c > 0. Computational estimates suggest c ≈ 0.074321. - Tom Johnston, Jan 18 2023

Extensions

Edited by N. J. A. Sloane, Aug 26 2006
More terms from Gordon F. Royle, Aug 21 2006
a(21) and a(22) from Frank Ruskey, Aug 29 2006
a(23) from Frank Ruskey, Aug 31 2006
a(24)-a(29) from Matuszka Tamás, Jan 10 2013
a(30)-a(31) from articles by Kai Wang and Axel Kohnert, Apr 15 2016
a(0) = 1 and a(1) = 0 prepended by Gus Wiseman, Dec 31 2020

A105784 Number of different forests of unrooted trees, without isolated vertices, on n labeled nodes.

Original entry on oeis.org

0, 1, 3, 19, 155, 1641, 21427, 334377, 6085683, 126745435, 2975448641, 77779634571, 2241339267037, 70604384569005, 2414086713172695, 89049201691604881, 3525160713653081279, 149075374211881719939, 6707440248292609651513, 319946143503599791200675
Offset: 1

Views

Author

Washington Bomfim, Apr 21 2005

Keywords

Comments

Number of labeled acyclic graphs covering n vertices. The unlabeled version is A144958. This is the covering case A001858. The connected case is A000272. - Gus Wiseman, Apr 28 2024

Examples

			a(4) = 19 because there are 19 different such forests on 4 labeled nodes: 4^2 are trees, 3 have two trees and none can have more than two trees.
From _Gus Wiseman_, Apr 28 2024: (Start)
Edge-sets of the a(2) = 1 through a(4) = 19 forests:
    12    12,13    12,34
          12,23    13,24
          13,23    14,23
                   12,13,14
                   12,13,24
                   12,13,34
                   12,14,23
                   12,14,34
                   12,23,24
                   12,23,34
                   12,24,34
                   13,14,23
                   13,14,24
                   13,23,24
                   13,23,34
                   13,24,34
                   14,23,24
                   14,23,34
                   14,24,34
(End)
		

Crossrefs

The connected case is A000272, rooted A000169.
This is the covering case of A001858, unlabeled A005195.
The unlabeled version is A144958.
For triangles instead of cycles we have A372168, covering case of A213434.
For a unique cycle we have A372195, covering case of A372193.
A002807 counts cycles in a complete graph.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A372170 counts simple graphs by triangles, covering A372167.

Programs

  • Maple
    b:= n-> add(add(binomial(m, j) *binomial(n-1, n-m-j)
            *n^(n-m-j) *(m+j)!/ (-2)^j, j=0..m)/m!, m=0..n):
    a:= n-> add(b(k) *(-1)^(n-k) *binomial(n, k), k=0..n):
    seq(a(n), n=1..17);  # Alois P. Heinz, Sep 10 2008
  • Mathematica
    Unprotect[Power]; 0^0 = 1; b[n_] := Sum[Sum[Binomial[m, j]*Binomial[n-1, n -m-j]*n^(n-m-j)*(m+j)!/(-2)^j, {j, 0, m}]/m!, {m, 0, n}]; a[n_] := Sum[ b[k]*(-1)^(n-k)*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

a(n)= sum N/D over all the partitions of n: 1K1 + 2K2 + ... + nKn, with smallest part greater than 1, where N = n!*Product_{i=1..n}i^((i-2)Ki) and D = Product_{i=1..n}(Ki!(i!)^Ki).
Inverse binomial transform of A001858. E.g.f.: exp(-x-LambertW(-x) -LambertW(-x)^2/2). - Vladeta Jovovic, Apr 22 2005
a(n) ~ exp(-exp(-1)+1/2) * n^(n-2). - Vaclav Kotesovec, Aug 16 2013
Previous Showing 21-30 of 67 results. Next