cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 97 results. Next

A088314 Cardinality of set of sets of parts of all partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 30, 37, 51, 61, 79, 96, 124, 148, 186, 222, 275, 326, 400, 473, 575, 673, 811, 946, 1132, 1317, 1558, 1813, 2138, 2463, 2893, 3323, 3882, 4461, 5177, 5917, 6847, 7818, 8994, 10251, 11766, 13334, 15281, 17309, 19732, 22307
Offset: 0

Views

Author

Naohiro Nomoto, Nov 05 2003

Keywords

Comments

Number of different values of A007947(m) when A056239(m) is equal to n.
From Gus Wiseman, Sep 11 2023: (Start)
Also the number of finite sets of positive integers that can be linearly combined using all positive coefficients to obtain n. For example, the a(1) = 1 through a(7) = 12 sets are:
{1} {1} {1} {1} {1} {1} {1}
{2} {3} {2} {5} {2} {7}
{1,2} {4} {1,2} {3} {1,2}
{1,2} {1,3} {6} {1,3}
{1,3} {1,4} {1,2} {1,4}
{2,3} {1,3} {1,5}
{1,4} {1,6}
{1,5} {2,3}
{2,4} {2,5}
{1,2,3} {3,4}
{1,2,3}
{1,2,4}
(End)

Examples

			The 7 partitions of 5 and their sets of parts are
[ #]  partition      set of parts
[ 1]  [ 1 1 1 1 1 ]  {1}
[ 2]  [ 2 1 1 1 ]    {1, 2}
[ 3]  [ 2 2 1 ]      {1, 2}  (same as before)
[ 4]  [ 3 1 1 ]      {1, 3}
[ 5]  [ 3 2 ]        {2, 3}
[ 6]  [ 4 1 ]        {1, 4}
[ 7]  [ 5 ]          {5}
so we have a(5) = |{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {5}}| = 6.
		

Crossrefs

Cf. A182410.
The complement in subsets of {1..n-1} is A070880(n) = A365045(n) - 1.
The case of pairs is A365315, see also A365314, A365320, A365321.
A116861 and A364916 count linear combinations of strict partitions.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364914 and A365046 count combination-full subsets.

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    list2set := L -> {op(L)};
    a:= N -> list2set(map( list2set, combinat[partition](N) ));
    seq(nops(a(n)), n=0..30);
    #  Yogy Namara (yogy.namara(AT)gmail.com), Jan 13 2010
    b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x->{x[],i}, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..40);
    # Alois P. Heinz, Aug 09 2012
  • Mathematica
    Table[Length[Union[Map[Union,IntegerPartitions[n]]]],{n,1,30}] (* Geoffrey Critzer, Feb 19 2013 *)
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i < 1, {},
         Union@Flatten@{b[n, i - 1], Table[If[Head[#] == List,
         Append[#, i]]& /@ b[n - i*j, i - 1], {j, 1, n/i}]}]];
    a[n_] := Length[b[n, n]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,1,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&&combp[n,#]!={}&]], {n,0,15}] (* Gus Wiseman, Sep 11 2023 *)
  • Python
    from sympy.utilities.iterables import partitions
    def A088314(n): return len({tuple(sorted(set(p))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023

Formula

a(n) = 2^(n-1) - A070880(n). - Alois P. Heinz, Feb 08 2019
a(n) = A365042(n) + 1. - Gus Wiseman, Sep 13 2023

Extensions

More terms and clearer definition from Vladeta Jovovic, Apr 21 2005

A365046 Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 1, 2, 6, 11, 28, 53, 118, 235, 490, 973, 2008, 3990, 8089, 16184, 32563, 65071, 130667, 261183, 523388, 1046748, 2095239, 4190208, 8385030, 16768943, 33546257, 67092732, 134201461, 268400553, 536839090, 1073670970, 2147414967, 4294829905, 8589793931
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Includes all subsets containing both 1 and n.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  .  {1,2}  {1,3}    {1,4}      {1,5}
               {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,3,5}
                        {1,3,4}    {1,4,5}
                        {2,3,4}    {2,3,5}
                        {1,2,3,4}  {2,4,5}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement is A124506, first differences of A326083.
The binary complement is A288728, first differences of A007865.
First differences of A364914.
The positive version is A365042, first differences of A365043.
The positive complement is counted by A365045, first differences of A365044.
Without re-usable parts we have A365069, first differences of A364534.
The binary version is A365070, first differences of A093971.
A364350 counts combination-free strict partitions, complement A364839.
A085489 and A364755 count subsets without the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combs[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n+1) = 2^n - A124506(n).

A050291 Number of double-free subsets of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 288, 576, 960, 1920, 2880, 5760, 9360, 18720, 28080, 56160, 93600, 187200, 280800, 561600, 898560, 1797120, 2695680, 5391360, 8985600, 17971200, 26956800, 53913600, 87091200, 174182400, 261273600, 522547200, 870912000
Offset: 0

Views

Author

Keywords

Comments

A set is double-free if it does not contain both x and 2x.
So these are equally "half-free" subsets. - Gus Wiseman, Jul 08 2019

Examples

			From _Gus Wiseman_, Jul 08 2019: (Start)
The a(0) = 1 through a(5) = 20 double-free subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                {2,3}  {1,3}    {5}
                       {1,4}    {1,3}
                       {2,3}    {1,4}
                       {3,4}    {1,5}
                       {1,3,4}  {2,3}
                                {2,5}
                                {3,4}
                                {3,5}
                                {4,5}
                                {1,3,4}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {3,4,5}
                                {1,3,4,5}
(End)
		

References

  • Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3)
          /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2]))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 16 2019
  • Mathematica
    a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 10 2012, from first formula *)
    Table[Length[Select[Subsets[Range[n]],Intersection[#,#/2]=={}&]],{n,0,10}] (* Gus Wiseman, Jul 08 2019 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=2; for(k=2,n, v[k]=v[k-1]*fibonacci(valuation(k,2)+3)/fibonacci(valuation(k,2)+2)); v \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = a(n-1)*Fibonacci(b(2n)+2)/Fibonacci(b(2n)+1), Fibonacci = A000045, b = A007814.
a(n) = 2^n - A088808(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

Extended with formula by Christian G. Bower, Sep 15 1999
a(0)=1 prepended by Alois P. Heinz, Jan 16 2019

A364913 Number of integer partitions of n having a part that can be written as a nonnegative linear combination of the other (possibly equal) parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 10, 12, 20, 27, 39, 51, 74, 95, 130, 169, 225, 288, 378, 479, 617, 778, 990, 1239, 1560, 1938, 2419, 2986, 3696, 4538, 5575, 6810, 8319, 10102, 12274, 14834, 17932, 21587, 25963, 31120, 37275, 44513, 53097, 63181, 75092, 89030, 105460, 124647
Offset: 0

Views

Author

Gus Wiseman, Aug 20 2023

Keywords

Comments

Includes all non-strict partitions (A047967).

Examples

			The a(0) = 0 through a(7) = 12 partitions:
  .  .  (11)  (21)   (22)    (41)     (33)      (61)
              (111)  (31)    (221)    (42)      (322)
                     (211)   (311)    (51)      (331)
                     (1111)  (2111)   (222)     (421)
                             (11111)  (321)     (511)
                                      (411)     (2221)
                                      (2211)    (3211)
                                      (3111)    (4111)
                                      (21111)   (22111)
                                      (111111)  (31111)
                                                (211111)
                                                (1111111)
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(12).
The partition (6,4,3,2) has 6 = 4+2, or 6 = 3+3, or 6 = 2+2+2, or 4 = 2+2, so is counted under a(15).
		

Crossrefs

The strict case is A364839.
For sums instead of combinations we have A364272, binary A364670.
The complement in strict partitions is A364350.
For subsets instead of partitions we have A364914, complement A326083.
Allowing equal parts gives A365068, complement A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A365006 = no strict partitions w/ pos linear combination.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#||Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,15}]

Formula

a(n) + A364915(n) = A000041(n).

A179009 Number of maximally refined partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 2, 3, 5, 1, 3, 2, 3, 5, 7, 2, 5, 3, 4, 6, 7, 11, 3, 8, 5, 6, 6, 8, 11, 15, 7, 13, 9, 9, 9, 10, 12, 16, 22, 11, 20, 15, 17, 14, 15, 16, 18, 24, 30, 18, 30, 26, 28, 22, 27, 21, 25, 27, 33, 42, 36, 45, 43, 46, 38, 44, 33, 43, 36, 44, 47, 60, 46, 66, 64, 70, 63, 72, 61, 69, 60, 63, 58, 69, 80
Offset: 0

Views

Author

David S. Newman, Jan 03 2011

Keywords

Comments

Let a_1,a_2,...,a_k be a partition of n into distinct parts. We say that this partition can be refined if one of the summands, say a_i can be replaced with two numbers whose sum is a_i and the resulting partition is a partition into distinct parts. For example, the partition 5+2 can be refined because 5 can be replaced by 4+1 to give 4+2+1. If a partition into distinct parts cannot be refined we say that it is maximally refined.
The value of a(0) is taken to be 1 as is often done when considering partitions (also, the empty partition cannot be refined).
This sequence was suggested by Moshe Shmuel Newman.
From Gus Wiseman, Jun 07 2025: (Start)
Given any strict partition, the following are equivalent:
1) The parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.
(End)

Examples

			a(11)=2 because there are two partitions of 11 which are maximally refined, namely 6+4+1 and 5+3+2+1.
From _Joerg Arndt_, Apr 23 2023: (Start)
The 15 maximally refined partitions of 35 are:
   1:    [ 1 2 3 4 5 6 14 ]
   2:    [ 1 2 3 4 5 7 13 ]
   3:    [ 1 2 3 4 5 8 12 ]
   4:    [ 1 2 3 4 5 9 11 ]
   5:    [ 1 2 3 4 6 7 12 ]
   6:    [ 1 2 3 4 6 8 11 ]
   7:    [ 1 2 3 4 6 9 10 ]
   8:    [ 1 2 3 4 7 8 10 ]
   9:    [ 1 2 3 5 6 7 11 ]
  10:    [ 1 2 3 5 6 8 10 ]
  11:    [ 1 2 3 5 7 8 9 ]
  12:    [ 1 2 4 5 6 7 10 ]
  13:    [ 1 2 4 5 6 8 9 ]
  14:    [ 1 3 4 5 6 7 9 ]
  15:    [ 2 3 4 5 6 7 8 ]
(End)
		

Crossrefs

For subsets instead of partitions we have A326080, complement A384350.
These partitions are ranked by A383707, apparently positions of 1 in A383706.
The strict complement is A384318 (strict partitions that can be refined).
This is the strict version of A384392, ranks A384320, complement apparently A384321.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}] (* Gus Wiseman, Jun 09 2025 *)

Extensions

More terms from Joerg Arndt, Jan 04 2011

A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 60, 112, 244, 480, 992, 1944, 4048, 7936, 16176, 32320, 65088, 129504, 261248, 520448, 1046208, 2090240, 4186624, 8365696, 16766464, 33503744, 67064064, 134113280, 268347392, 536546816, 1073575936, 2146703360, 4294425600, 8588476416, 17178349568
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2023

Keywords

Examples

			The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7).
The a(1) = 1 through a(4) = 14 subsets:
  {1}  {1}    {1}      {1}
       {2}    {3}      {2}
       {1,2}  {1,2}    {4}
              {1,3}    {1,2}
              {2,3}    {1,3}
              {1,2,3}  {1,4}
                       {2,3}
                       {2,4}
                       {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A088314.
The case of subsets containing n is A131577.
The binary version is A365314, positive A365315.
The binary complement is A365320, positive A365321.
The positive complement is counted by A365322.
A version for partitions is A365379, strict A365311.
The complement is counted by A365380.
The case of subsets without n is A365542.
A326083 and A124506 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}]
  • PARI
    a(n)={
      my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b);
      my(recurse(k,b)=
        if(bittest(b,0), 2^(n+1-k),
        if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)),
        self()(k+1, b) + self()(k+1, comb(k,b)) )));
      recurse(1, 1<Andrew Howroyd, Sep 04 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A364346 Number of strict integer partitions of n such that there is no ordered triple of parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free strict partitions.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 5, 5, 8, 9, 11, 11, 16, 16, 20, 20, 25, 30, 34, 38, 42, 50, 58, 64, 73, 80, 90, 105, 114, 128, 148, 158, 180, 201, 220, 241, 277, 306, 333, 366, 404, 447, 497, 544, 592, 662, 708, 797, 861, 954, 1020, 1131, 1226, 1352, 1456, 1600
Offset: 0

Views

Author

Gus Wiseman, Jul 22 2023

Keywords

Examples

			The a(1) = 1 through a(14) = 11 partitions (A..E = 10..14):
  1   2   3   4    5    6    7    8    9     A    B     C     D     E
              31   32   51   43   53   54    64   65    75    76    86
                   41        52   62   72    73   74    93    85    95
                             61   71   81    82   83    A2    94    A4
                                       531   91   92    B1    A3    B3
                                                  A1    543   B2    C2
                                                  641   732   C1    D1
                                                  731   741   652   851
                                                        831   751   932
                                                              832   941
                                                              931   A31
		

Crossrefs

For subsets of {1..n} we have A007865 (sum-free sets), differences A288728.
For sums of any length > 1 we have A364349, non-strict A237667.
The complement is counted by A363226, non-strict A363225.
The non-strict version is A364345, ranks A364347, complement A364348.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions not re-using parts, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A364346(n): return sum(1 for p in partitions(n) if max(p.values(),default=1)==1 and not any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 7, 4, 4, 8, 8, 14, 14, 14, 8, 8, 16, 16, 28, 28, 37, 28, 28, 16, 16, 32, 32, 56, 56, 74, 74, 74, 56, 56, 32, 32, 64, 64, 112, 112, 148, 148, 175, 148, 148, 112, 112, 64, 64, 128, 128, 224, 224, 296, 296, 350, 350, 350, 296, 296, 224, 224, 128, 128
Offset: 2

Views

Author

Gus Wiseman, Sep 15 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
    1
    2    2    2
    4    4    7    4    4
    8    8   14   14   14    8    8
   16   16   28   28   37   28   28   16   16
   32   32   56   56   74   74   74   56   56   32   32
Row n = 4 counts the following subsets:
  {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
  {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
  {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
  {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
                        {1,3,4}
                        {2,3,4}
                        {1,2,3,4}
		

Crossrefs

Row lengths are A005408.
The case counting only length-2 subsets is A008967.
Column k = n + 1 appears to be A167762.
The version for all subsets (instead of just pairs) is A365381.
Column k = n is A365544.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]

A364347 Numbers k > 0 such that if prime(a) and prime(b) both divide k, then prime(a+b) does not.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2023

Keywords

Comments

Or numbers without any prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A364345.

Examples

			We don't have 6 because prime(1), prime(1), and prime(1+1) are all divisors.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
		

Crossrefs

Subsets of this type are counted by A007865 (sum-free sets).
Partitions of this type are counted by A364345.
The squarefree case is counted by A364346.
The complement is A364348, counted by A363225.
The non-binary version is counted by A364350.
Without re-using parts we have A364461, counted by A236912.
Without re-using parts we have complement A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]=={}&]

A288728 Number of sum-free sets that can be created by adding n to all sum-free sets [1..n-1].

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 18, 19, 47, 43, 102, 116, 238, 240, 553, 554, 1185, 1259, 2578, 2607, 5873, 5526, 11834, 12601, 24692, 24390, 53735, 52534, 107445, 107330, 218727, 215607, 461367, 427778, 891039, 910294, 1804606, 1706828, 3695418, 3411513, 7136850, 6892950
Offset: 1

Views

Author

Ben Burns, Jun 14 2017

Keywords

Comments

Using the standard definition of sum-free set, this is simply the difference of successive terms in A007865.
Number of subsets of {1..n} containing n but not containing the sum of any other two elements (repeats allowed). Also the number of sum-free sets (A007865) with maximum n. - Gus Wiseman, Aug 12 2023

Examples

			1 can be added to {};
2 can be added to {} but not {1};
3 can be added to {},{1},{2};
4 can be added to {},{1},{3} but not {2},{1,3},{2,3}.
From _Gus Wiseman_, Aug 12 2023: (Start)
The a(1) = 1 through a(7) = 18 sum-free sets with maximum n:
  {1}  {2}  {3}    {4}    {5}      {6}      {7}
            {1,3}  {1,4}  {1,5}    {1,6}    {1,7}
            {2,3}  {3,4}  {2,5}    {2,6}    {2,7}
                          {3,5}    {4,6}    {3,7}
                          {4,5}    {5,6}    {4,7}
                          {1,3,5}  {1,4,6}  {5,7}
                          {3,4,5}  {2,5,6}  {6,7}
                                   {4,5,6}  {1,3,7}
                                            {1,4,7}
                                            {1,5,7}
                                            {2,3,7}
                                            {2,6,7}
                                            {3,5,7}
                                            {4,5,7}
                                            {4,6,7}
                                            {5,6,7}
                                            {1,3,5,7}
                                            {4,5,6,7}
(End)
		

Crossrefs

Cf. A007865.
For non-binary sum-free subsets of {1..n} we have A237667.
For sum-free partitions we have A364345, without re-using parts A236912.
Without re-using parts we have A364755, diffs of A085489 (non-bin A151897).
The complement without re-using parts is A364756, differences of A088809.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,10}] (* Gus Wiseman, Aug 12 2023 *)

Formula

a(n) = A007865(n) - A007865(n-1).
Previous Showing 21-30 of 97 results. Next