cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A090365 Shifts 1 place left under the INVERT transform of the BINOMIAL transform of this sequence.

Original entry on oeis.org

1, 1, 3, 11, 47, 225, 1177, 6625, 39723, 251939, 1681535, 11764185, 86002177, 655305697, 5193232611, 42726002123, 364338045647, 3215471252769, 29331858429241, 276224445794785, 2682395337435723, 26832698102762435, 276221586866499839, 2923468922184615897
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

The Hankel transform of this sequence is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - Philippe Deléham, Mar 02 2005
a(n) appears to be the number of indecomposable permutations (A003319) of [n+1] that avoid both of the dashed patterns 32-41 and 41-32. - David Callan, Aug 27 2014
This is true: A nonempty permutation avoids 32-41 and 41-32 if and only if all its components do so. So if A(x) denotes the g.f. for indecomposable {32-41,41-32}-avoiders, then F(x):=1/(1-A(x)) is the g.f. for all {32-41,41-32}-avoiders. From A074664, F(x)=1/x(1-1/B(x)) where B(x) is the o.g.f. for the Bell numbers. Solve for A(x). - David Callan, Jul 21 2017
The Hankel transform of this sequence without the a(0)=1 term is also A000178(n+1). - Michael Somos, Oct 02 2024

Crossrefs

Programs

  • Maple
    bintr:= proc(p) proc(n) add(p(k) *binomial(n,k), k=0..n) end end:
    invtr:= proc(p) local b;
               b:= proc(n) option remember; local i;
                    `if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1))
                   end;
            end:
    b:= invtr(bintr(a)):
    a:= n-> `if`(n<0, 0, b(n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 28 2012
  • Mathematica
    a[n_] := Module[{A, B}, A = 1+x; For[k=1, k <= n, k++, B = (A /. x -> x/(1 - x))/(1-x) + O[x]^n // Normal; A = 1 + x*A*B]; SeriesCoefficient[A, {x, 0, n}]]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 23 2016, adapted from PARI *)
  • PARI
    {a(n)=local(A); if(n<0,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A,x, x/(1-x))/(1-x)+x*O(x^n); A=1+x*A*B);polcoeff(A,n,x))}

Formula

G.f.: A(x) satisfies A(x) = 1/(1 - A(x/(1-x))*x/(1-x) ).
a(n) = Sum_{k = 0..n} A085838(n, k). - Philippe Deléham, Jun 04 2004
G.f.: 1/x-1-1/(B(x)-1) where B(x) = g.f. for A000110 the Bell numbers. - Vladeta Jovovic, Aug 08 2004
a(n) = Sum_{k=0..n} A094456(n,k). - Philippe Deléham, Nov 07 2007
G.f.: 1/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-x/(1-5x/(1-... (continued fraction). - Paul Barry, Feb 25 2010
From Sergei N. Gladkovskii, Jan 06 2012 - May 12 2013: (Start)
Continued fractions:
G.f.: 1 - x/(G(0)+x); G(k) = x - 1 + x*k + x*(x-1+x*k)/G(k+1).
G.f.: 1/x - 1/2 + (x^2-4)/(4*U(0)-2*x^2+8) where U(k) = k*(2*k+3)*x^2 + x - 2 - (2-x+2*k*x)*(2+3*x+2*k*x)*(k+1)*x^2/U(k+1).
G.f.: 1/x+1/(U(0)-1) where U(k) = -x*k + 1 - x - x^2*(k+1)/U(k+1).
G.f.: (1 - U(0))/x - 1 where U(k) = 1 - x*(k+2) - x^2*(k+1)/U(k+1).
G.f.: (1 - U(0))/x where U(k) = 1 - x*(k+1)/(1-x/U(k+1)).
G.f.: 1/x + 1/( G(0)-1) where G(k) = 1 - x/(1 - x*(2*k+1)/(1 - x/(1 - x*(2*k+2)/ G(k+1) ))).
G.f.:1/x + 1/( G(0) - 1 ) where G(k) = 1 - x/(1 - x*(k+1)/G(k+1) ).
G.f.: (1 - Q(0))/x where Q(k) = 1 + x/(x*k - 1 )/Q(k+1).
G.f.: 1/x - 1/x/Q(0), where Q(k) = 1 + x/(1 - x + x*(k+1)/(x - 1/Q(k+1))).
(End)
Conjecture: a(n) = b(2^(n-1) - 1) for n > 0 with a(0) = 1 where b(n) = b((n - 2^f(n))/2) + b(floor((2n - 2^f(n))/2)) + b(A025480(n-1)) for n > 0 with b(0) = 1 and where f(n) = A007814(n). - Mikhail Kurkov, Jan 11 2022

A006014 a(n+1) = (n+1)*a(n) + Sum_{k=1..n-1} a(k)*a(n-k).

Original entry on oeis.org

1, 2, 7, 32, 178, 1160, 8653, 72704, 679798, 7005632, 78939430, 965988224, 12762344596, 181108102016, 2748049240573, 44405958742016, 761423731533286, 13809530704348160, 264141249701936818, 5314419112717217792, 112201740111374359516, 2480395343617443024896
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 7*x^3 + 32*x^4 + 178*x^5 + 1160*x^6 + 8653*x^7 + 72704*x^8 + ...
		

References

  • D. E. Knuth, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Similar recurrences: A124758, A243499, A284005, A329369, A341392.

Programs

  • Mathematica
    Nest[Append[#1, #1[[-1]] (#2 + 1) + Total@ Table[#1[[k]] #1[[#2 - k]], {k, #2 - 1}]] & @@ {#, Length@ #} &, {1}, 17] (* Michael De Vlieger, Aug 22 2018 *)
    (* or *)
    a[1] = 1; a[n_] := a[n] = n a[n-1] + Sum[a[k] a[n-1-k], {k, n-2}]; Array[a, 18] (* Giovanni Resta, Aug 23 2018 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = k * A[k-1] + sum( j=1, k-2, A[j] * A[k-1-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sage.all import *
    @CachedFunction
    def a(n): # a = A006014
        if n<5: return (pow(5,n-1) + 3)//4
        else: return n*a(n-1) + 2*sum(a(k)*a(n-k-1) for k in range(1,(n//2))) + (n%2)*pow(a((n-1)//2),2)
    print([a(n) for n in range(1,61)]) # G. C. Greubel, Jan 10 2025

Formula

G.f. A(x) satisfies A(x) = x * (1 + A(x) + A(x)^2 + x * A'(x)). - Michael Somos, Jul 24 2011
Conjecture: a(n) = Sum_{k=0..2^(n-1) - 1} b(k) for n > 0 where b(2n+1) = b(n), b(2n) = b(n) + b(n - 2^f(n)) + b(2n - 2^f(n)) + b(A025480(n-1)) for n > 0 with b(0) = b(1) = 1 and where f(n) = A007814(n). - Mikhail Kurkov, Nov 19 2021
a(n) ~ cosh(sqrt(3)*Pi/2) * n! / Pi = A073017 * n!. - Vaclav Kotesovec, Nov 21 2024

A152884 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} with excedance set equal to the k-th subset of {1,2,...,n-1} (n>=0, 0<=k<=ceiling(2^(n-1))-1). The subsets of {1,2,...,n-1} are ordered according to size, while the subsets of the same size follow the lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 1, 7, 3, 1, 1, 1, 15, 7, 3, 1, 31, 17, 7, 7, 3, 1, 15, 7, 3, 1, 1, 1, 31, 15, 7, 3, 1, 115, 69, 37, 15, 31, 17, 7, 7, 3, 1, 115, 69, 31, 37, 17, 7, 15, 7, 3, 1, 31, 15, 7, 3, 1, 1, 1, 63, 31, 15, 7, 3, 1, 391, 245, 145, 77, 31, 115, 69, 37, 15, 31, 17, 7, 7, 3, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 13 2009

Keywords

Comments

For example, the eight subsets of {1,2,3} are ordered as empty,1,2,3,12,13,23,123. The excedance set of a permutation p of {1,2,...,n} is the set of indices i such that p(i)>i; it is a subset of {1,2,...,n-1}.
Row n contains ceiling(2^(n-1)) entries.
Sum of entries in row n is n! (A000142).
The given Maple program yields the term of the sequence corresponding to a specified permutation size n and a specified excedance set A.
All terms are odd. - Alois P. Heinz, Jan 31 2023

Examples

			T(5,3) = 3 because the 3rd subset of {1,2,3,4} is {3} and the permutations of {1,2,3,4,5} with excedance set {3} are 12435, 12534 and 12543.
T(5,4) = 1: 12354 (4th subset of {1,2,3,4} is {4}).
Triangle starts:
      k=0   1  2  3  4   5   6  7  8 ...
  n=0:  1;
  n=1:  1;
  n=2:  1,  1;
  n=3:  1,  3, 1, 1;
  n=4:  1,  7, 3, 1, 7,  3,  1, 1;
  n=5:  1, 15, 7, 3, 1, 31, 17, 7, 7, 3, 1, 15, 7, 3, 1, 1;
  ...
		

Crossrefs

Row sums are A000142.
See A360288, A360289 for similar triangles.
Cf. A000225, A011782, A082185, A136126, A193360, A329369 (another version).

Programs

  • Maple
    n := 7: A := {1, 2, 4}: with(combinat): P := permute(n): EX := proc (p) local S, i: S := {}: for i to n-1 do if i < p[i] then S := `union`(S, {i}) else end if end do: S end proc: ct := 0: for j to factorial(n) do if EX(P[j]) = A then ct := ct+1 else end if end do: ct;
    # second Maple program:
    T:= proc(n) option remember; uses combinat; local b, i, l;
          l:= map(x-> {x[]}, [seq(choose([$1..n-1], i)[], i=0..n-1)]):
          for i to nops(l) do h(l[i]):=i od:
          b:= proc(s, l) option remember; (m->
               `if`(m=0, x^h(l), add(b(s minus {i}, {l[],
               `if`(i
          seq(coeff(p, x, i), i=1..degree(p)))(b({$1..n}, {}))
        end: T(0):=1:
    seq(T(n), n=0..8);  # Alois P. Heinz, Jan 29 2023

Formula

T(n,k) = A000225(n-k) = 2^(n-k) - 1 for n>k>0. - Alexander R. Povolotsky, May 14 2025

Extensions

T(0,0)=1 prepended and indexing adapted by Alois P. Heinz, Jan 29 2023

A290615 Number of maximal independent vertex sets (and minimal vertex covers) in the n-triangular honeycomb bishop graph.

Original entry on oeis.org

1, 2, 5, 14, 45, 164, 661, 2906, 13829, 70736, 386397, 2242118, 13759933, 88975628, 604202693, 4296191090, 31904681877, 246886692680, 1986631886029, 16592212576862, 143589971363981, 1285605080403332, 11891649654471285, 113491862722958474, 1116236691139398565
Offset: 1

Views

Author

Eric W. Weisstein, Aug 07 2017

Keywords

Comments

From Andrew Howroyd, Aug 09 2017: (Start)
See A146304 for algorithm and PARI code to produce this sequence.
The total number of independent vertex sets is given by Bell(n+1) where Bell=A000110.
A bishop can move along two axes in the triangular honeycomb grid.
Equivalently, the number of arrangements of non-attacking rooks on an n X n right triangular board with every square controlled by at least one rook. (End)

Crossrefs

Row sums of A290724.
Cf. A000110 (independent vertex sets), A007814, A146304.
Similar recurrences: A124758, A243499, A284005, A329369, A341392.

Programs

  • Mathematica
    Table[Sum[k! StirlingS2[m, k] StirlingS2[n + 1 - m, k + 1], {m, 0, n}, {k, 0, Min[m, n - m]}], {n, 20}] (* Eric W. Weisstein, Feb 01 2024 *)
  • PARI
    { A290615(n) = sum(m=0, n, sum(k=0, min(m,n-m), k! * stirling(m,k,2) * stirling(n+1-m,k+1,2) )); } \\ Max Alekseyev, Oct 14 2021

Formula

Conjecture: a(n) = Sum_{k=0..2^(n-1) - 1} b(k) for n > 0 where b(2n+1) = b(n - 2^f(n)), b(2n) = b(n) + b(2n - 2^f(n)) for n > 0 with b(0) = b(1) = 1 and where f(n) = A007814(n). Also b((4^n - 1)/3) = (floor((n+1)/2)!)^3. - Mikhail Kurkov, Sep 18 2021
a(n) = Sum_{m=0..n} Sum_{k=0..min(m,n-m)} k! * S(m,k) * S(n+1-m,k+1), where S(,) are Stirling numbers of second kind. - Max Alekseyev, Oct 14 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 09 2017

A092920 Number of strongly monotone partitions of [n].

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 58, 164, 496, 1601, 5502, 20075, 77531, 315947, 1354279, 6087421, 28611385, 140239297, 715116827, 3785445032, 20760746393, 117759236340, 689745339984, 4165874930885, 25911148634728, 165775085602106, 1089773992530717, 7353740136527305
Offset: 0

Views

Author

Ralf Stephan, Apr 17 2004

Keywords

Comments

A partition is strongly monotone if its blocks can be written in increasing order of their least element and increasing order of their greatest element, simultaneously.
a(n) is the number of strongly nonoverlapping partitions of [n] where "strongly nonoverlapping" means nonoverlapping (see A006789 for definition) and, in addition, no singleton block is a subset of the span (interval from minimum to maximum) of another block. For example, 13-24 is nonnesting and 14-23 is strongly nonoverlapping but neither has the other property. The Motzkin number M_n (A001006) counts strongly noncrossing partitions of [n]. - David Callan, Sep 20 2007
Strongly monotone partitions can also be described as partitions in which no block is contained in the span of another, where span denotes the interval from smallest to largest entries. For example, 134/25/6 is strongly monotone but 135/24/6 is not because the block 24 is contained in the interval [1,5]. - David Callan, Aug 27 2014

Crossrefs

Similar recurrences: A284005, A329369, A341392.

Programs

  • Maple
    G:=1/(1-x-x^2/(1-x-x^2/(1-2*x-x^2/(1-3*x-x^2/(1-4*x-x^2/(1-5*x-x^2/(1-6*x-x^2/(1-7*x-x^2/(1-8*x-x^2/(1-9*x-x^2/(1-10*x-x^2/(1-11*x-x^2/(1-12*x-x^2/(1-13*x-x^2/(1-14*x-x^2/(1-15*x-x^2/(1-16*x-x^2/(1-17*x-x^2)))))))))))))))))): Gser:=series(G,x=0,32): seq(coeff(Gser, x, n), n=0..28);  # Emeric Deutsch, Apr 13 2005
  • Mathematica
    terms = 26;
    f[1] = 1; f[k_ /; k>1] = -x^2;
    g[1] = 1-x; g[k_ /; k>1] := 1-(k-1)x;
    A[x_] = ContinuedFractionK[f[k], g[k], {k, 1, Ceiling[terms/2]}];
    CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-x-x^2/(1-x-x^2/(1-2*x-x^2/(1-3*x-x^2/...)))) = 1/(1-x-x^2*B(x)) where B(x) is g.f. for the Bessel numbers A006789.
a(n) = leftmost column terms of M^n*V, where M = an infinite tridiagonal matrix with all 1's in the super and subdiagonals and (1,1,2,3,4,5,...) as the main diagonal; and the rest zeros. V = vector [1,0,0,0,...]. - Gary W. Adamson, Jun 16 2011
G.f.: 1/Q(0) where Q(k) = 1-x*(k+2)+x/(1+x/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 17 2013
Conjecture: a(n) = Sum_{k=0..2^(n-1) - 1} b(k) for n > 0 with a(0) = 1 where b(2^m*(2n+1)) = Sum_{k=0..[m > 0]*(m-1)} binomial(m-1, k)*b(2^k*n) for m >= 0, n >= 0 with b(0) = 1. - Mikhail Kurkov, Apr 24 2023

Extensions

More terms from Emeric Deutsch, Apr 13 2005

A329718 The number of open tours by a biased rook on a specific f(n) X 1 board, where f(n) = A070941(n) and cells are colored white or black according to the binary representation of 2n.

Original entry on oeis.org

1, 2, 4, 4, 8, 6, 14, 8, 16, 10, 24, 10, 46, 24, 46, 16, 32, 18, 44, 14, 84, 34, 68, 18, 146, 68, 138, 44, 230, 84, 146, 32, 64, 34, 84, 22, 160, 54, 112, 22, 276, 106, 224, 54, 376, 106, 192, 34, 454, 192, 406, 112, 690, 224, 406, 84, 1066, 376, 690, 160
Offset: 0

Views

Author

Mikhail Kurkov, Nov 19 2019 [verification needed]

Keywords

Comments

A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right.

Examples

			a(1) = 2 because the binary expansion of 2 is 10 and there are 2 open biased rook's tours, namely 12 and 21.
a(2) = 4 because the binary expansion of 4 is 100 and there are 4 open biased rook's tours, namely 132, 213, 231 and 321.
a(3) = 4 because the binary expansion of 6 is 110 and there are 4 open biased rook's tours, namely 123, 132, 231 and 312.
		

Crossrefs

Formula

a(n) = f(n) + f(A059894(n)) = f(n) + f(2*A053645(n)) for n > 0 with a(0) = 1 where f(n) = A329369(n).
Sum_{k=0..2^n-1} a(k) = 2*(n+1)! - 1 for n >= 0.
a((4^n-1)/3) = 2*A110501(n+1) for n > 0.
a(2^1*(2^n-1)) = A027649(n),
a(2^2*(2^n-1)) = A027650(n),
a(2^3*(2^n-1)) = A027651(n),
a(2^4*(2^n-1)) = A283811(n),
and more generally, a(2^m*(2^n-1)) = T(n,m+1) for n >= 0, m >= 0 where T(n,m) = Sum_{k=0..n} k!*(k+1)^m*Stirling2(n,k)*(-1)^(n-k).

A347204 a(n) = a(f(n)/2) + a(floor((n+f(n))/2)) for n > 0 with a(0) = 1 where f(n) = A129760(n).

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 15, 5, 9, 13, 20, 17, 27, 37, 52, 6, 11, 16, 25, 21, 34, 47, 67, 26, 43, 60, 87, 77, 114, 151, 203, 7, 13, 19, 30, 25, 41, 57, 82, 31, 52, 73, 107, 94, 141, 188, 255, 37, 63, 89, 132, 115, 175, 235, 322, 141, 218, 295, 409, 372, 523, 674
Offset: 0

Views

Author

Mikhail Kurkov, Aug 23 2021 [verification needed]

Keywords

Comments

Modulo 2 binomial transform of A243499(n).

Crossrefs

Programs

  • MATLAB
    function a = A347204(max_n)
        a(1) = 1;
        a(2) = 2;
        for nloop = 3:max_n
            n = nloop-1;
            s = 0;
            for k = 0:floor(log2(n))-1
                s = s + a(1+A053645(n)-2^k*(mod(floor(n/(2^k)),2)));
            end
            a(nloop) = 2*a(A053645(n)+1) + s;
        end
    end
    function a_n = A053645(n)
        a_n = n - 2^floor(log2(n));
    end % Thomas Scheuerle, Oct 25 2021
  • Mathematica
    f[n_] := BitAnd[n, n - 1]; a[0] = 1; a[n_] := a[n] = a[f[n]/2] + a[Floor[(n + f[n])/2]]; Array[a, 100, 0] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    f(n) = bitand(n, n-1); \\ A129760
    a(n) = if (n<=1, n+1, if (n%2, a(n\2)+a(n-1), a(f(n/2)) + a(n/2+f(n/2)))); \\ Michel Marcus, Oct 25 2021
    
  • PARI
    \\ Also see links.
    
  • PARI
    A129760(n) = bitand(n, n-1);
    memoA347204 = Map();
    A347204(n) = if (n<=1, n+1, my(v); if(mapisdefined(memoA347204,n,&v), v, v = if(n%2, A347204(n\2)+A347204(n-1), A347204(A129760(n/2)) + A347204(n/2+A129760(n/2))); mapput(memoA347204,n,v); (v))); \\ (Memoized version of Michel Marcus's program given above) - Antti Karttunen, Nov 20 2021
    

Formula

a(n) = a(n - 2^f(n)) + (1 + f(n))*a((n - 2^f(n))/2) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(2n+1) = a(n) + a(2n) for n >= 0.
a(2n) = a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(n) = 2*a(f(n)) + Sum_{k=0..floor(log_2(n))-1} a(f(n) - 2^k*T(n,k)) for n > 1 with a(0) = 1, a(1) = 2, and where f(n) = A053645(n), T(n,k) = floor(n/2^k) mod 2.
Sum_{k=0..2^n - 1} a(k) = A035009(n+1) for n >= 0.
a((4^n - 1)/3) = A002720(n) for n >= 0.
a(2^n - 1) = A000110(n+1),
a(2*(2^n - 1)) = A005493(n),
a(2^2*(2^n - 1)) = A005494(n),
a(2^3*(2^n - 1)) = A045379(n),
a(2^4*(2^n - 1)) = A196834(n),
a(2^m*(2^n-1)) = T(n,m+1) is the n-th (m+1)-Bell number for n >= 0, m >= 0 where T(n,m) = m*T(n-1,m) + Sum_{k=0..n-1} binomial(n-1,k)*T(k,m) with T(0,m) = 1.
a(n) = Sum_{j=0..2^A000120(n)-1} A243499(A295989(n,j)) for n >= 0. Also A243499(n) = Sum_{j=0..2^f(n)-1} (-1)^(f(n)-f(j)) a(A295989(n,j)) for n >= 0 where f(n) = A000120(n). In other words, a(n) = Sum_{j=0..n} (binomial(n,j) mod 2)*A243499(j) and A243499(n) = Sum_{j=0..n} (-1)^(f(n)-f(j))*(binomial(n,j) mod 2)*a(j) for n >= 0 where f(n) = A000120(n).
Generalization:
b(n, x) = (1/x)*b((n - 2^f(n))/2, x) + (-1)^n*b(floor((2n - 2^f(n))/2), x) for n > 0 with b(0, x) = 1 where f(n) = A007814(n).
Sum_{k=0..2^n - 1} b(k, x) = (1/x)^n for n >= 0.
b((4^n - 1)/3, x) = (1/x)^n*n!*L_{n}(x) for n >= 0 where L_{n}(x) is the n-th Laguerre polynomial.
b((8^n - 1)/7, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A265649(n, k) for n >= 0.
b(2^n - 1, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A008277(n+1, k+1),
b(2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143494(n+2, k+2),
b(2^2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143495(n+3, k+3),
b(2^m*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*T(n+m+1, k+m+1, m+1) for n >= 0, m >= 0 where T(n,k,m) is m-Stirling numbers of the second kind.

A360288 Number T(n,k) of permutations of [n] whose excedance set is the k-th finite subset of positive integers in standard order; triangle T(n,k), n>=0, 0<=k<=ceiling(2^(n-1))-1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 7, 1, 3, 1, 1, 1, 15, 7, 31, 3, 17, 7, 15, 1, 7, 3, 7, 1, 3, 1, 1, 1, 31, 15, 115, 7, 69, 31, 115, 3, 37, 17, 69, 7, 37, 15, 31, 1, 15, 7, 31, 3, 17, 7, 15, 1, 7, 3, 7, 1, 3, 1, 1, 1, 63, 31, 391, 15, 245, 115, 675, 7, 145, 69
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2023

Keywords

Comments

The list of finite subsets of positive integers in standard statistical (or Yates) order begins: {}, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}, ... cf. A048793, A048794.
The excedance set of permutation p of [n] is the set of indices i with p(i)>i, a subset of [n-1].
All terms are odd.

Examples

			T(5,4) = 3: there are 3 permutations of [5] with excedance set {3} (the 4th subset in standard order): 12435, 12534, 12543.
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  3, 1,  1;
  1,  7, 3,  7, 1,  3, 1,  1;
  1, 15, 7, 31, 3, 17, 7, 15, 1, 7, 3, 7, 1, 3, 1, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A000225(n-1) for n>=1.
Row sums give A000142.
Row lengths are A011782.
See A152884, A360289 for similar triangles.

Programs

  • Maple
    b:= proc(s, t) option remember; (m->
          `if`(m=0, x^(t/2), add(b(s minus {i}, t+
          `if`(i (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n}, 0)):
    seq(T(n), n=0..7);
  • Mathematica
    b[s_, t_] := b[s, t] = Function [m, If[m == 0, x^(t/2), Sum[b[s ~Complement~ {i}, t + If[i < m, 2^i, 0]], {i, s}]]][Length[s]];
    T[n_] := CoefficientList[b[Range[n], 0], x];
    Table[T[n], {n, 0, 7}]  // Flatten (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)

Formula

Sum_{k=0..2^(n-1)-1} (k+1) * T(n,k) = A029767(n) for n>=1.
Sum_{k=0..2^(n-1)-1} (2^n-1-k) * T(n,k) = A355258(n+1) for n>=1.

A344902 Number of open tours by a biased rook on a specific f(n) X 1 board, where f(n) = A070941(n) and cells are colored white or black according to the binary representation of 2n.

Original entry on oeis.org

1, 2, 4, 6, 8, 18, 18, 24, 16, 54, 54, 96, 54, 96, 96, 120, 32, 162, 162, 384, 162, 384, 384, 600, 162, 384, 384, 600, 384, 600, 600, 720, 64, 486, 486, 1536, 486, 1536, 1536, 3000, 486, 1536, 1536, 3000, 1536, 3000, 3000, 4320, 486, 1536, 1536, 3000, 1536
Offset: 0

Views

Author

Mikhail Kurkov, Jun 01 2021 [verification needed]

Keywords

Comments

A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves to the left to any cell or to the right only to a black cell. A biased rook on a black cell moves in any direction.

Crossrefs

Programs

  • Mathematica
    a[n_] := With[{s = DigitCount[n, 2]}, s[[1]]! * (1 + s[[1]])^(1 + s[[2]])]; a[0] = 1; Array[a, 50, 0] (* Amiram Eldar, Aug 03 2023 *)

Formula

a(n) = A000120(n)!*(1 + A000120(n))^(A023416(n) + 1) for n > 0 with a(0)=1.
a(2n) = (1 + A000120(n))*a(n) for n > 0 with a(0)=1.
From Mikhail Kurkov, Oct 16 2021: (Start)
Conjecture: a(n) = A284005(A073138(n)) for n >= 0 (noticed by Sequence Machine).
Proof: note that A073138(n) in binary is A000120(n) of ones followed by A023416(n) zeros. Then use the formula from "Comments on A284005". (End) [verification needed]

A357990 Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = 1 for k > 0 and where T(n, k) = R(n, k+1) - R(n, k) for n > 0, k > 0. Here R(n, k) = T(A053645(n), k)*k^(A290255(n) + 1).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 7, 1, 7, 1, 1, 3, 19, 1, 9, 1, 1, 7, 5, 37, 1, 11, 1, 1, 1, 11, 7, 61, 1, 13, 1, 1, 15, 1, 15, 9, 91, 1, 15, 1, 1, 7, 65, 1, 19, 11, 127, 1, 17, 1, 1, 17, 19, 175, 1, 23, 13, 169, 1, 19, 1, 1, 3, 43, 37, 369, 1, 27, 15, 217, 1, 21
Offset: 0

Views

Author

Mikhail Kurkov, Nov 20 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1,    1,    1,    1, ...
   1,  1,   1,   1,   1,    1,    1,    1, ...
   3,  5,   7,   9,  11,   13,   15,   17, ...
   1,  1,   1,   1,   1,    1,    1,    1, ...
   7, 19,  37,  61,  91,  127,  169,  217, ...
   3,  5,   7,   9,  11,   13,   15,   17, ...
   7, 11,  15,  19,  23,   27,   31,   35, ...
   1,  1,   1,   1,   1,    1,    1,    1, ...
  15, 65, 175, 369, 671, 1105, 1695, 2465, ...
		

Crossrefs

Programs

  • PARI
    R(n,k)=my(L=logint(n, 2), A=n - 2^L); T(A, k)*k^(L - if(A>0, logint(A, 2) + 1) + 1)
    T(n,k)=if(n==0, 1, R(n, k+1) - R(n, k))
    
  • PARI
    T(n, k) = my(A = 2*n+1, B, C, v1, v2); v1 = []; while(A > 0, B=valuation(A, 2); v1=concat(v1, B+1); A \= 2^(B+1)); v1 = Vecrev(v1); A = #v1; v2 = vector(A, i, 1); for(i=1, A-1, B = A-i; for(j=1, B, C = B-j+k+1; v2[j] = v2[j]*C^v1[B] - v2[j+1]*(C-1)^v1[B])); v2[1] \\ Mikhail Kurkov, Apr 30 2024

Formula

Conjecture: T(n, 1) = A329369(n).
Previous Showing 11-20 of 26 results. Next