A078374
Number of partitions of n into distinct and relatively prime parts.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 10, 17, 17, 23, 26, 37, 36, 53, 53, 70, 77, 103, 103, 139, 147, 184, 199, 255, 260, 339, 358, 435, 474, 578, 611, 759, 810, 963, 1045, 1259, 1331, 1609, 1726, 2015, 2200, 2589, 2762, 3259, 3509, 4058, 4416, 5119, 5488, 6364, 6882
Offset: 1
From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(13) = 17 partitions (empty column indicated by dot, A = 10, B = 11, C = 12):
1 . 21 31 32 51 43 53 54 73 65 75 76
41 321 52 71 72 91 74 B1 85
61 431 81 532 83 543 94
421 521 432 541 92 651 A3
531 631 A1 732 B2
621 721 542 741 C1
4321 632 831 643
641 921 652
731 5421 742
821 6321 751
5321 832
841
931
A21
5431
6421
7321
(End)
A000837 is the not necessarily strict version.
A302796 gives the Heinz numbers of these partitions.
A305713 is the pairwise coprime instead of relatively prime version.
A000740 counts relatively prime compositions.
Cf.
A007359,
A101268,
A289508,
A289509,
A291166,
A298748,
A337451,
A337485,
A337451,
A337561,
A337563.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&]],{n,15}] (* Gus Wiseman, Oct 18 2020 *)
A101268
Number of compositions of n into pairwise relatively prime parts.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 22, 38, 63, 101, 160, 254, 403, 635, 984, 1492, 2225, 3281, 4814, 7044, 10271, 14889, 21416, 30586, 43401, 61205, 85748, 119296, 164835, 226423, 309664, 422302, 574827, 781237, 1060182, 1436368, 1942589, 2622079, 3531152, 4742316, 6348411
Offset: 0
From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(5) = 13 compositions:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (31) (23)
(111) (112) (32)
(121) (41)
(211) (113)
(1111) (131)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
A337461 counts these compositions of length 3, with unordered version
A307719 and unordered strict version
A220377.
A337462 does not consider a singleton to be coprime unless it is (1), with strict version
A337561.
A337664 looks only at distinct parts, with non-constant version
A337665.
A000740 counts relatively prime compositions, with strict case
A332004.
A178472 counts compositions with a common factor.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]<=1||CoprimeQ@@#&]],{n,0,10}] (* Gus Wiseman, Oct 18 2020 *)
A302698
Number of integer partitions of n into relatively prime parts that are all greater than 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 13, 7, 23, 18, 32, 33, 65, 50, 104, 92, 148, 153, 252, 226, 376, 376, 544, 570, 846, 821, 1237, 1276, 1736, 1869, 2552, 2643, 3659, 3887, 5067, 5509, 7244, 7672, 10086, 10909, 13756, 15168, 19195, 20735, 26237, 28708, 35418, 39207
Offset: 1
The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
(32) . (43) (53) (54) (73) (65) (75)
(52) (332) (72) (433) (74) (543)
(322) (432) (532) (83) (552)
(522) (3322) (92) (732)
(3222) (443) (4332)
(533) (5322)
(542) (33222)
(632)
(722)
(3332)
(4322)
(5222)
(32222)
A000837 is the version allowing 1's.
A002865 does not require relative primality.
A302697 gives the Heinz numbers of these partitions.
A337451 is the ordered strict version.
A337485 is the pairwise coprime instead of relatively prime version.
A000740 counts relatively prime compositions.
A078374 counts relatively prime strict partitions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A332004 counts strict relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
-
b:= proc(n, i, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
`if`(i<2, 0, b(n, i-1, g)+b(n-i, min(n-i, i), igcd(g, i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..60); # Alois P. Heinz, Apr 12 2018
-
Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&GCD@@#===1&]],{n,30}]
(* Second program: *)
b[n_, i_, g_] := b[n, i, g] = If[n == 0, If[g == 1, 1, 0], If[i < 2, 0, b[n, i - 1, g] + b[n - i, Min[n - i, i], GCD[g, i]]]];
a[n_] := b[n, n, 0];
Array[a, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A337561
Number of pairwise coprime strict compositions of n, where a singleton is not considered coprime unless it is (1).
Original entry on oeis.org
1, 1, 0, 2, 2, 4, 8, 6, 16, 12, 22, 40, 40, 66, 48, 74, 74, 154, 210, 228, 242, 240, 286, 394, 806, 536, 840, 654, 1146, 1618, 2036, 2550, 2212, 2006, 2662, 4578, 4170, 7122, 4842, 6012, 6214, 11638, 13560, 16488, 14738, 15444, 16528, 25006, 41002, 32802
Offset: 0
The a(1) = 1 through a(9) = 12 compositions (empty column shown as dot):
(1) . (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (3,1) (2,3) (5,1) (2,5) (3,5) (2,7)
(3,2) (1,2,3) (3,4) (5,3) (4,5)
(4,1) (1,3,2) (4,3) (7,1) (5,4)
(2,1,3) (5,2) (1,2,5) (7,2)
(2,3,1) (6,1) (1,3,4) (8,1)
(3,1,2) (1,4,3) (1,3,5)
(3,2,1) (1,5,2) (1,5,3)
(2,1,5) (3,1,5)
(2,5,1) (3,5,1)
(3,1,4) (5,1,3)
(3,4,1) (5,3,1)
(4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
A072706 counts unimodal strict compositions.
A220377*6 counts these compositions of length 3.
A337462 is the not necessarily strict version.
A000740 counts relatively prime compositions, with strict case
A332004.
A051424 counts pairwise coprime or singleton partitions.
A101268 considers all singletons to be coprime, with strict case
A337562.
A178472 counts compositions with a common factor > 1.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||UnsameQ@@#&&CoprimeQ@@#&]],{n,0,10}]
A337485
Number of pairwise coprime integer partitions of n with no 1's, where a singleton is not considered coprime unless it is (1).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 3, 5, 4, 4, 7, 8, 9, 10, 10, 9, 13, 17, 18, 17, 19, 19, 24, 29, 34, 33, 31, 31, 42, 42, 56, 55, 50, 54, 66, 77, 86, 86, 79, 81, 96, 124, 127, 126, 127, 126, 145, 181, 190, 184, 183, 192, 212, 262, 289, 278, 257, 270, 311
Offset: 0
The a(n) partitions for n = 5, 7, 12, 13, 16, 17, 18, 19 (A..H = 10..17):
(3,2) (4,3) (7,5) (7,6) (9,7) (9,8) (B,7) (A,9)
(5,2) (5,4,3) (8,5) (B,5) (A,7) (D,5) (B,8)
(7,3,2) (9,4) (D,3) (B,6) (7,6,5) (C,7)
(A,3) (7,5,4) (C,5) (8,7,3) (D,6)
(B,2) (8,5,3) (D,4) (9,5,4) (E,5)
(9,5,2) (E,3) (9,7,2) (F,4)
(B,3,2) (F,2) (B,4,3) (G,3)
(7,5,3,2) (B,5,2) (H,2)
(D,3,2) (B,5,3)
(7,5,4,3)
A007359 considers all singletons to be coprime.
A337452 is the relatively prime instead of pairwise coprime version, with non-strict version
A302698.
A337563 is the restriction to partitions of length 3.
A002865 counts partitions with no 1's.
A078374 counts relatively prime strict partitions.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]
A101271
Number of partitions of n into 3 distinct and relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 8, 9, 12, 12, 16, 15, 21, 20, 26, 25, 33, 28, 40, 36, 45, 42, 56, 44, 65, 56, 70, 64, 84, 66, 96, 81, 100, 88, 120, 90, 133, 110, 132, 121, 161, 120, 175, 140, 176, 156, 208, 153, 220, 180, 222, 196, 261, 184, 280, 225, 270, 240, 312, 230, 341, 272
Offset: 6
For n=10 we have 4 such partitions: 1+2+7, 1+3+6, 1+4+5 and 2+3+5.
From _Gus Wiseman_, Oct 13 2020: (Start)
The a(6) = 1 through a(18) = 15 triples (A..F = 10..15):
321 421 431 432 532 542 543 643 653 654 754 764 765
521 531 541 632 651 652 743 753 763 854 873
621 631 641 732 742 752 762 853 863 954
721 731 741 751 761 843 871 872 972
821 831 832 851 852 943 953 981
921 841 932 861 952 962 A53
931 941 942 961 971 A71
A21 A31 951 A51 A43 B43
B21 A32 B32 A52 B52
A41 B41 A61 B61
B31 C31 B42 C51
C21 D21 B51 D32
C32 D41
C41 E31
D31 F21
E21
(End)
A000741 is the ordered non-strict version.
A001399(n-6) does not require relative primality.
A023022 counts pairs instead of triples.
A023023 is the not necessarily strict version.
A078374 counts these partitions of any length, with Heinz numbers
A302796.
A220377 is the pairwise coprime instead of relatively prime version.
A284825 counts the case that is pairwise non-coprime also.
A337605 is the pairwise non-coprime instead of relatively prime version.
A008289 counts strict partitions by sum and length.
A007304 gives the Heinz numbers of 3-part strict partitions.
A307719 counts 3-part pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
-
m:=3: with(numtheory): g:=sum(mobius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k),i=1..m),k=1..20): gser:=series(g,x=0,80): seq(coeff(gser,x^n),n=6..77); # Emeric Deutsch, May 31 2005
-
Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&GCD@@#==1&]],{n,6,50}] (* Gus Wiseman, Oct 13 2020 *)
A337563
Number of pairwise coprime unordered triples of positive integers > 1 summing to n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 4, 0, 7, 1, 7, 3, 9, 2, 15, 3, 13, 5, 17, 4, 29, 5, 20, 8, 28, 8, 42, 8, 31, 14, 42, 10, 59, 12, 45, 21, 52, 14, 77, 17, 68, 26, 69, 19, 101, 26, 84, 34, 86, 25, 138, 28, 95, 43, 111, 36, 161, 35, 118, 52, 151
Offset: 0
The a(10) = 1 through a(24) = 15 triples (empty columns indicated by dots, A..J = 10..19):
532 . 543 . 743 753 754 . 765 B53 875 975 985 B75 987
732 752 853 873 974 B73 B65 D73 B76
952 954 A73 D53 B74 B85
B32 972 B54 B83 B94
B43 B72 B92 BA3
B52 D43 D54 C75
D32 D52 D72 D65
E53 D74
H32 D83
D92
F72
G53
H43
H52
J32
A337485 counts these partitions of any length.
A007359 counts pairwise coprime partitions with no 1's.
A078374 counts relatively prime strict partitions.
A302696 ranks pairwise coprime partitions.
A302698 counts relatively prime partitions with no 1's.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A337452 counts relatively prime strict partitions with no 1's.
Cf.
A007304,
A082024,
A101268,
A284825,
A332004,
A337451,
A337461,
A337462,
A337561,
A337599,
A337601,
A337605.
-
Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]
A337562
Number of pairwise coprime strict compositions of n, where a singleton is always considered coprime.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 9, 7, 17, 13, 23, 41, 41, 67, 49, 75, 75, 155, 211, 229, 243, 241, 287, 395, 807, 537, 841, 655, 1147, 1619, 2037, 2551, 2213, 2007, 2663, 4579, 4171, 7123, 4843, 6013, 6215, 11639, 13561, 16489, 14739, 15445, 16529, 25007, 41003, 32803
Offset: 0
The a(1) = 1 through a(9) = 12 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (3,1) (2,3) (5,1) (2,5) (3,5) (2,7)
(3,2) (1,2,3) (3,4) (5,3) (4,5)
(4,1) (1,3,2) (4,3) (7,1) (5,4)
(2,1,3) (5,2) (1,2,5) (7,2)
(2,3,1) (6,1) (1,3,4) (8,1)
(3,1,2) (1,4,3) (1,3,5)
(3,2,1) (1,5,2) (1,5,3)
(2,1,5) (3,1,5)
(2,5,1) (3,5,1)
(3,1,4) (5,1,3)
(3,4,1) (5,3,1)
(4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
A101268 is the not necessarily strict version.
A220377*6 counts these compositions of length 3.
A337561 does not consider a singleton to be coprime unless it is (1), with non-strict version
A337462.
A337664 looks only at distinct parts.
A000740 counts relatively prime compositions, with strict case
A332004.
A072706 counts unimodal strict compositions.
A178472 counts compositions with a common factor.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&(Length[#]<=1||CoprimeQ@@#)&]],{n,0,10}]
A337452
Number of relatively prime strict integer partitions of n with no 1's.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 2, 6, 3, 9, 7, 11, 11, 20, 15, 28, 24, 35, 36, 55, 47, 73, 71, 95, 96, 136, 123, 180, 177, 226, 235, 305, 299, 403, 406, 503, 523, 668, 662, 852, 873, 1052, 1115, 1370, 1391, 1720, 1784, 2125, 2252, 2701, 2786, 3348, 3520, 4116
Offset: 0
The a(5) = 1 through a(16) = 11 partitions (A = 10, B = 11, C = 12, D = 13):
32 43 53 54 73 65 75 76 95 87 97
52 72 532 74 543 85 B3 B4 B5
432 83 732 94 653 D2 D3
92 A3 743 654 754
542 B2 752 753 763
632 643 932 762 853
652 5432 843 943
742 852 952
832 942 B32
A32 6532
6432 7432
A078374 is the version allowing 1's.
A332004 is the ordered version allowing 1's.
A337450 is the ordered non-strict version.
A337485 is the pairwise coprime version.
A000837 counts relatively prime partitions.
A078374 counts relatively prime strict partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]
A337451
Number of relatively prime strict compositions of n with no 1's.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 0, 4, 2, 10, 8, 20, 14, 34, 52, 72, 90, 146, 172, 244, 390, 502, 680, 956, 1218, 1686, 2104, 3436, 4078, 5786, 7200, 10108, 12626, 17346, 20876, 32836, 38686, 53674, 67144, 91528, 113426, 152810, 189124, 245884, 343350, 428494, 552548, 719156
Offset: 0
The a(5) = 2 through a(10) = 8 compositions (empty column indicated by dot):
(2,3) . (2,5) (3,5) (2,7) (3,7)
(3,2) (3,4) (5,3) (4,5) (7,3)
(4,3) (5,4) (2,3,5)
(5,2) (7,2) (2,5,3)
(2,3,4) (3,2,5)
(2,4,3) (3,5,2)
(3,2,4) (5,2,3)
(3,4,2) (5,3,2)
(4,2,3)
(4,3,2)
A032022 does not require relative primality.
A302698 is the unordered non-strict version.
A332004 is the version allowing 1's.
A000837 counts relatively prime partitions.
A032020 counts strict compositions.
A078374 counts strict relatively prime partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.
A337561 counts strict pairwise coprime compositions.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]
Showing 1-10 of 14 results.
Comments