cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 3244 results. Next

A128394 Numbers k such that k^2 divides 14^k - 1.

Original entry on oeis.org

1, 13, 2041, 24355253, 249302027, 16772956369, 39665616523, 388885239223, 2974921088191, 3487599163841, 61054982558011, 200151688351277, 473329801968959
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

13 divides all except the first term.

Crossrefs

Extensions

a(4)-a(5) from Farideh Firoozbakht, Mar 05 2007
a(6)-a(13) from Max Alekseyev, May 06 2010

A128396 Numbers k such that k^2 divides 16^k-1.

Original entry on oeis.org

1, 3, 5, 15, 21, 39, 55, 105, 155, 165, 195, 205, 273, 465, 609, 615, 903, 915, 1155, 1265, 1365, 1705, 2067, 2145, 2255, 2265, 2373, 2667, 3045, 3081, 3255, 3795, 4305, 4515, 4895, 4965, 5115, 6045, 6123, 6355, 6405, 6765, 7077, 7455, 7917, 7995, 10065
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[11000],Divisible[16^#-1,#^2]&] (* Harvey P. Dale, Dec 14 2010 *)
    Join[{1},Select[Range[11000],PowerMod[16,#,#^2]==1&]] (* Harvey P. Dale, Mar 16 2022 *)

A172323 a(n) = floor(n*(sqrt(5)+sqrt(2))).

Original entry on oeis.org

0, 3, 7, 10, 14, 18, 21, 25, 29, 32, 36, 40, 43, 47, 51, 54, 58, 62, 65, 69, 73, 76, 80, 83, 87, 91, 94, 98, 102, 105, 109, 113, 116, 120, 124, 127, 131, 135, 138, 142, 146, 149, 153, 156, 160, 164, 167, 171, 175, 178, 182, 186, 189, 193, 197, 200, 204, 208, 211
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Programs

  • Magma
    [Floor(n*(Sqrt(5)+Sqrt(2))): n in [0..60]];
  • Mathematica
    With[{c=Sqrt[5]+Sqrt[2]},Floor[c*Range[0,60]]] (* Harvey P. Dale, Sep 03 2012 *)

A046205 In Leibniz's Harmonic Triangle, write numerator first and then denominator of each element.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 6, 1, 3, 1, 4, 1, 12, 1, 12, 1, 4, 1, 5, 1, 20, 1, 30, 1, 20, 1, 5, 1, 6, 1, 30, 1, 60, 1, 60, 1, 30, 1, 6, 1, 7, 1, 42, 1, 105, 1, 140, 1, 105, 1, 42, 1, 7, 1, 8, 1, 56, 1, 168, 1, 280, 1, 280, 1, 168, 1, 56, 1, 8, 1, 9, 1, 72, 1, 252, 1, 504, 1, 630, 1, 504, 1
Offset: 1

Views

Author

Keywords

Examples

			1/1;
1/2, 1/2;
1/3, 1/6, 1/3;
1/4, 1/12, 1/12, 1/4;
1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Extensions

More terms from Gregory D Johnson (gjohn(AT)iname.com)
Edited by M. F. Hasler, Apr 05 2015

A102171 Iccanobirt semiprime indices (1 of 15): Indices of semiprime numbers in A102111.

Original entry on oeis.org

5, 11, 24, 33, 57, 64, 71, 72, 116, 126, 141, 174, 210, 311, 334, 370, 441, 480, 574
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

A102111(a(n)) = A102191(n).

Extensions

a(13) from Robert Price, Nov 07 2018
Offset changed to 1 and a(14)-a(19) from Jinyuan Wang, Jul 31 2021

A128401 Numbers k such that k^2 divides 21^k-1.

Original entry on oeis.org

1, 2, 4, 5, 10, 20, 22, 44, 52, 68, 110, 220, 260, 340, 506, 572, 748, 820, 884, 1012, 2530, 2756, 2860, 3740, 3916, 4108, 4420, 5060, 9020, 9724, 10660, 13156, 13780, 13940, 17204, 19580, 20540, 23782, 29084, 30316, 34060, 45188, 46852, 47564
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000],Divisible[21^#-1,#^2]&] (* Harvey P. Dale, Jun 17 2011 *)

A128403 Numbers k such that k^2 divides 23^k-1.

Original entry on oeis.org

1, 2, 4, 6, 8, 11, 12, 20, 22, 24, 40, 42, 44, 60, 66, 78, 84, 88, 120, 132, 156, 168, 212, 220, 264, 312, 420, 424, 440, 444, 462, 474, 546, 620, 636, 660, 780, 820, 840, 858, 888, 924, 948, 1014, 1060, 1092, 1218, 1220, 1240, 1272, 1320, 1560, 1640, 1716
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[2000],PowerMod[23,#,#^2]==1&]] (* Harvey P. Dale, May 02 2015 *)

A128405 Numbers k such that k^2 divides 12^k - 1.

Original entry on oeis.org

1, 11, 253, 11891, 768361, 36112967, 61488361, 154261943, 2936791979, 61057324141, 67546215517, 107342336783, 186740152357, 347036920549, 429306186947, 468493520891, 635974117823, 797688507253, 3174672129299
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

11 divides all except the first term.
All terms are congruent to +-1 (mod 12). - Robert G. Wilson v, Dec 19 2014

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[ PowerMod[12, n, n^2] - 1, n^2] == 0; k = 1; lst = {}; While[k < 100000001, If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 10; If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 2]; lst (* Robert G. Wilson v, Dec 19 2014 *)

Extensions

a(6)-a(8) from Farideh Firoozbakht, Mar 05 2007
Terms a(9) onward from Max Alekseyev, May 06 2010

A130658 Period 4: repeat [1, 1, 2, 2].

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1
Offset: 0

Views

Author

Paul Curtz, Jun 21 2007

Keywords

Comments

Continued fraction expansion of (9+sqrt(221))/14. - Klaus Brockhaus, May 03 2010
From Klaus Brockhaus, May 14 2010: (Start)
Decimal expansion of 34/303.
a(n) = A014695(n+3). (End)
Lengths of runs in A214090. - Reinhard Zumkeller, Jul 06 2012

Crossrefs

Programs

Formula

G.f.: ( 1+2*x^2 ) / ( (1-x)*(1+x^2) ). - R. J. Mathar, Jan 18 2011
a(n) = (n^3 mod 4 + (n+1)^3 mod 4 + 1)/2. - Gary Detlefs, Apr 15 2011
a(n) = -1/2*cos(1/2*Pi*n)-1/2*sin(1/2*Pi*n)+3/2. - Leonid Bedratyuk, May 13 2012
From Wesley Ivan Hurt, May 30 2015: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3), n>3.
a(n) = (3+(-1)^((2*n+3+(-1)^n)/4))/2. (End)
From Wesley Ivan Hurt, Jul 11 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = A021913(n) + 1. (End)

Extensions

More terms from Klaus Brockhaus, May 14 2010

A102165 Iccanobirt primes (15 of 15): Prime numbers in A102125.

Original entry on oeis.org

2, 7, 31, 941, 7112507, 12796921, 3517479344831, 1899587921740207, 57354010293760755391, 35721164922760679029463000239097478253, 7147924589973841766823293744823574255243111
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

Next term is too large to include.

Crossrefs

Formula

a(n) = A102125(A102145(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 14 2021
Previous Showing 31-40 of 3244 results. Next