cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 3245 results. Next

A176642 Triangle T(n, k) = 8^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 64, 64, 1, 1, 512, 4096, 512, 1, 1, 4096, 262144, 262144, 4096, 1, 1, 32768, 16777216, 134217728, 16777216, 32768, 1, 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1, 1, 2097152, 68719476736, 35184372088832, 281474976710656, 35184372088832, 68719476736, 2097152, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      8,          1;
  1,     64,         64,           1;
  1,    512,       4096,         512,           1;
  1,   4096,     262144,      262144,        4096,          1;
  1,  32768,   16777216,   134217728,    16777216,      32768,      1;
  1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1;
		

Crossrefs

Cf. this sequence (q=2), A176643 (q=3), A176644 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), this sequence (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [8^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten
    With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 2.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 2.
T(n, k) = 8^A004247(n,k), where A004247 is interpreted as a triangle. [relation detected by sequencedb.net]. - R. J. Mathar, Jun 30 2021
T(n, k, m) = (m+2)^(k*(n-k)) with m = 6. - G. C. Greubel, Jun 30 2021

Extensions

Edited by R. J. Mathar and G. C. Greubel, Jun 30 2021

A241842 Number of simple connected graphs on n nodes that are non-integral.

Original entry on oeis.org

0, 0, 1, 4, 18, 106, 846, 11095, 261056, 11716488, 1006700452
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 29 2014

Keywords

Crossrefs

Formula

a(n) = A001349(n) - A064731(n).

A051003 Beastly (or hateful) numbers: numbers containing the string 666 in their decimal expansion.

Original entry on oeis.org

666, 1666, 2666, 3666, 4666, 5666, 6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669, 7666, 8666, 9666, 10666, 11666, 12666, 13666, 14666, 15666, 16660, 16661, 16662, 16663, 16664, 16665, 16666, 16667, 16668, 16669, 17666, 18666
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[18666], ! StringFreeQ[ToString[#], "666"] &] (* Arkadiusz Wesolowski, Sep 08 2011 *)

A052046 Squares whose digits occur with the same frequency.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 169, 196, 256, 289, 324, 361, 529, 576, 625, 729, 784, 841, 961, 1024, 1089, 1296, 1369, 1764, 1849, 1936, 2304, 2401, 2601, 2704, 2809, 2916, 3025, 3249, 3481, 3721, 4096, 4356, 4761, 5041, 5184, 5329, 5476, 6084, 6241
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

Contains all members of A078255 that are < 10^10. 7744 is the first member that is not a member of A078255. - David Wasserman, Jun 27 2006

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,M;
      L:= convert(n,base,10);
      M:= {seq(numboccur(i,L),i=0..9)} minus {0};
      nops(M) = 1
    end proc:
    select(filter, [seq(i^2,i=0..200)]); # Robert Israel, Jan 08 2018
  • Mathematica
    t={}; Do[If[Length[DeleteDuplicates[Transpose[Tally[IntegerDigits[n^2]]][[2]]]] == 1, AppendTo[t,n^2]], {n,0,80}]; t (* Jayanta Basu, May 10 2013 *)
    sfQ[n_]:=Length[Union[Select[DigitCount[n],#!=0&]]]==1; Select[ Range[ 0,80]^2,sfQ] (* Harvey P. Dale, May 05 2019 *)

Extensions

Offset corrected by Michel Marcus, Aug 12 2015

A114762 a(n) = floor(3^(1/2)*10^n)^2.

Original entry on oeis.org

1, 289, 29929, 2999824, 299982400, 29999972025, 2999997202500, 299999997378064, 29999999737806400, 2999999998029351249, 299999999976140205625, 29999999999692481531536, 2999999999996960966074624, 299999999999973224736673344
Offset: 0

Views

Author

Amarnath Murthy, Nov 17 2005

Keywords

Comments

Largest square < 3*10^(2n).

Examples

			a(1) = floor(3^(1/2)*10)^2 = 17^2 = 289.
		

Crossrefs

Cf. A114761.

Programs

Extensions

More terms from Stefan Steinerberger, Apr 14 2006

A135654 Divisors of 8128 (the 4th perfect number), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 1111111, 11111110, 111111100, 1111111000, 11111110000, 111111100000, 1111111000000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008, Mar 03 2008

Keywords

Comments

The number of divisors of the 4th perfect number is equal to 2*A000043(4)=A061645(4)=14.

Examples

			The structure of divisors of 8128 (see A133024)
-------------------------------------------------------------------------
n ... Divisor . Formula ....... Divisor written in base 2 ...............
-------------------------------------------------------------------------
1)......... 1 = 2^0 ........... 1
2)......... 2 = 2^1 ........... 10
3)......... 4 = 2^2 ........... 100
4)......... 8 = 2^3 ........... 1000
5)........ 16 = 2^4 ........... 10000
6)........ 32 = 2^5 ........... 100000
7)........ 64 = 2^6 ........... 1000000 ... (The 4th superperfect number)
8)....... 127 = 2^7 - 2^0 ..... 1111111 ... (The 4th Mersenne prime)
9)....... 254 = 2^8 - 2^1 ..... 11111110
10)...... 508 = 2^9 - 2^2 ..... 111111100
11)..... 1016 = 2^10- 2^3 ..... 1111111000
12)..... 2032 = 2^11- 2^4 ..... 11111110000
13)..... 4064 = 2^12- 2^5 ..... 111111100000
14)..... 8128 = 2^13- 2^6 ..... 1111111000000 ... (The 4th perfect number)
		

Crossrefs

For more information see A133024 (Divisors of 8128). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,2]]&/@Divisors[8128] (* Harvey P. Dale, Jan 08 2014 *)

Formula

a(n)=A133024(n), written in base 2. Also, for n=1 .. 14: If n<=(A000043(4)=7) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(4)=7 digits "1" and (n-1-A000043(4)) digits "0".

A135655 Divisors of 33550336 (the 5th perfect number), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 1111111111111, 11111111111110, 111111111111100, 1111111111111000, 11111111111110000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008, Mar 01 2008, Mar 03 2008

Keywords

Comments

The number of divisors of the 5th perfect number is equal to 2*A000043(5)=A061645(5)=26.

Examples

			The structure of divisors of 33550336 (see A133025)
------------------------------------------------------------------------
n ...... Divisor . Formula ....... Divisor written in base 2 ...........
------------------------------------------------------------------------
1)............ 1 = 2^0 ........... 1
2)............ 2 = 2^1 ........... 10
3)............ 4 = 2^2 ........... 100
4)............ 8 = 2^3 ........... 1000
5)........... 16 = 2^4 ........... 10000
6)........... 32 = 2^5 ........... 100000
7)........... 64 = 2^6 ........... 1000000
8).......... 128 = 2^7 ........... 10000000
9).......... 256 = 2^8 ........... 100000000
10)......... 512 = 2^9 ........... 1000000000
11)........ 1024 = 2^10 .......... 10000000000
12)........ 2048 = 2^11 .......... 100000000000
13) ....... 4096 = 2^12 .......... 1000000000000 ... (The 5th superperfect number)
14) ....... 8191 = 2^13 - 2^0 .... 1111111111111 ... (The 5th Mersenne prime)
15) ...... 16382 = 2^14 - 2^1 .... 11111111111110
16) ...... 32764 = 2^15 - 2^2 .... 111111111111100
17) ...... 65528 = 2^16 - 2^3 .... 1111111111111000
18) ..... 131056 = 2^17 - 2^4 .... 11111111111110000
19) ..... 262112 = 2^18 - 2^5 .... 111111111111100000
20) ..... 524224 = 2^19 - 2^6 .... 1111111111111000000
21) .... 1048448 = 2^20 - 2^7 .... 11111111111110000000
22) .... 2096896 = 2^21 - 2^8 .... 111111111111100000000
23) .... 4193792 = 2^22 - 2^9 .... 1111111111111000000000
24) .... 8387584 = 2^23 - 2^10 ... 11111111111110000000000
25) ... 16775168 = 2^24 - 2^11 ... 111111111111100000000000
26) ... 33550336 = 2^25 - 2^12 ... 1111111111111000000000000 ... (The 5th perfect number)
		

Crossrefs

For more information see A133025 (Divisors of 33550336). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.

Formula

a(n)=A133025(n), written in base 2. Also, for n=1 .. 26: If n<=(A000043(5)=13) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(5)=13 digits "1" and (n-1-A000043(5)) digits "0".

A137756 Nontrivial elements in writing the numerator of an element first and then the denominator of that element (left to right) of Leibniz's harmonic-like triangle. That is, the nontrivial elements of A137752.

Original entry on oeis.org

2, 2, 3, 5, 6, 3, 4, 7, 12, 7, 12, 4, 5, 9, 20, 31, 30, 9, 20, 5, 6, 11, 30, 49, 60, 49, 60, 11, 30, 6, 7, 13, 42, 71, 105, 209, 140, 71, 105, 13, 42, 7, 8, 15, 56, 97, 168, 351, 280, 351, 280, 97, 168, 15, 56, 8, 9, 17, 72, 127, 252, 545, 504, 1471
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 10 2008

Keywords

Examples

			1/1; -->
1/2, 1/2; --> 2 2
1/3, 5/6, 1/3; --> 3 5 6 3
1/4, 7/12, 7/12, 1/4; --> ...
1/5, 9/20, 31/30, 9/20, 1/5;
		

Crossrefs

A166579 Prime numbers containing the string 17.

Original entry on oeis.org

17, 173, 179, 317, 617, 1117, 1171, 1217, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 2017, 2179, 2417, 2617, 2917, 3217, 3517, 3617, 3917, 4177, 4217, 4517, 4817, 5171, 5179, 5417, 5717, 6173, 6217, 6317, 6917, 7177, 7417
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Maple
    isA166579 := proc(n) local dgs,wrks; if isprime(n) then dgs := convert(n,base,10) ; wrks := false; for i from 1 to nops(dgs)-1 do if op(i,dgs) = 7 and op(i+1,dgs) = 1 then return true; end if; od: return false; else false; end if; end proc: for n from 1 to 8000 do if isA166579(n) then printf("%d,",n) ; end if; od: # R. J. Mathar, Nov 30 2009
  • Mathematica
    p17Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 2, 1], {1, 7}]]; Select[Prime[Range[1000]], p17Q] (* Vincenzo Librandi Sep 14 2012 *)
    Select[Prime[Range[1000]],SequenceCount[IntegerDigits[#],{1,7}]>0&] (* Harvey P. Dale, Apr 18 2022 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,17) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A216148 Primes of the form 2*k^k + 1 = A216147(k).

Original entry on oeis.org

3, 17832200896513, 78692816150593075150849
Offset: 1

Views

Author

M. F. Hasler, Sep 02 2012

Keywords

Comments

The sequence should be extended through A110932, which lists the corresponding values of k: The next term, 2*251^251 + 1 = A216147(A110932(4)) ~ 4.16*10^602, is too large to include here.

Crossrefs

Cf. A110932.
A subsequence of A133663, with b=a and c=1.

Programs

  • Mathematica
    Select[Table[2n^n+1,{n,20}],PrimeQ] (* Harvey P. Dale, Mar 27 2016 *)
  • PARI
    for(n=1,999, ispseudoprime(p=n^n*2+1) & print1(p","))

Formula

a(2) = A216147(12) = A005109(95) = A070855(12) = A058383(89) = A133663(18).
a(3) = A216147(18) = A005109(183)= A070855(18) = A058383(177)= A133663(36).
Previous Showing 71-80 of 3245 results. Next